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Preface

This report contains the 1997 annual progress reports of the research fellows mid

students supported by the Center for Turbulence Research. The Annual Research

Briefs as well as the proceedings of the summer programs are now available at CTR's

site on the world wide web (http://www-fpc.stanford.edu/CTR/welcome.html).

Last year, CTR hosted fourteen resident Postdoctoral Fellows, seven Research

Associates, three Senior Research Fellows, and supported four doctoral students

and eleven short term visitors. The major portion of Stanford's doctoral research

program in turbulence is sponsored by the United States Office of Naval Research

and the Air Force Office of Scientific Research. Many students supported by these

programs also conduct their research at the CTR, but their works are not included

in this report.

In September 1997, the U.S. Department of Energy (DOE) selected Stanford

as one of five universities to participate in a long term research program aimed at

enhancing numerical simulation capabilities for complex physical systems. DOE has

also made its unique supercomputers available to the university participants in this

program. It appears that CTR will play an important role in this program because

turbulence is a major component in the overarching problems being addressed by all

five of the new DOE Centers. Stanford's program, to be carried out in a new Center

for Integrated Turbulence Simulations (CITS) co-located with the CTR, involves

the simulation of the turbulent flow in a complete gas turbine engine, which is

expected to lead to a new paradigm for aircraft engine design. We expect CTR's

experience and expertise to contribute greatly to this project, and the engineering

challenge provided by the program should induce a number of relevant fundamental

investigations at CTR.

The first group of reports in this volume is concerned with fundamental issues in

large eddy simulation, LES. These include derivation of the constitutive equations,

filtering, and wall modeling. The latter is a pacing item for practical simulation

of high Reynolds number turbulent boundary layers. The next group of reports is

in Reynolds averaged turbulence modeling, which has always been emphasized at

CTR due to its importance to engineering analysis of complex flows. Our major

effort continued around extension and application of the V2F model to complex

flows and its implementation in general purpose NASA and industrial CFD codes.

The next group of reports is in turbulent combustion. We expect to expand CTR's

effort in this area to include combustion in realistic geometries and complex chemi-

cal reactions. The fourth group of reports is concerned with turbulence physics and

control and simulation methodology. The flow control activity at CTR has devel-

oped to a point where it is being used in joint research activities with industry. We

also expect the CTR's flow control program to have an impact on the problem of

combustion instabilities in gas turbine engines, which is an important part of the

aforementioned DOE project.
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The CTR's roster for 1997 is provided in the Appendix. Also listed are the mem-

bers of the Advisory Committee, which meets bi-annually to review the Center's

program, and the Steering Committee, which acts on fellowship applications.

It is a pleasure to thank Mrs. Debra Spinks for her efforts in the daily management

of the Center and her compilation of this report.
Parviz Moin

William C. Reynolds
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Invariant modeling in large-eddy
simulation of turbulence

By M. Oberlack

1. Motivation and objectives

Since the derivation of the Smagorinsky model (Smagorinsky 1963), much re-
search has been dedicated to developing more reliable and physically plausible

large-eddy models for turbulence. Speziale (1985) made the first attempt to de-

rive realizable large-eddy models. He argued that any subgrid-scale (SGS) model

in large-eddy simulation (LES) of turbulence should be Galilean invariant, a funda-

mental invariance property (also called symmetry) of the Navier-Stokes equations.

In his investigation he found that many models violate this symmetry. The most

widely used model, the Smagorinsky model, is Galilean invariant.

However, Galilean invariance is only one of several symmetries of the Navier-

stokes equations. It will be seen later that several of the symmetries are violated by

common SGS models, the bulk of which contain the local grid size of the computa-

tion as a length scale. From a theoretical point of view, having an external length

scale in the turbulent model which is not related to any turbulent quantity violates

certain symmetries of Navier-Stokes equations. This has serious implications for the

overall performance of the model, which will be pointed out below. In particular,

certain scaling laws cannot be realized by the modeled equations in wall-bounded

flows (see Appendix A).

A differential equation admits a symmetry if a transformation can be obtained

which leaves the equation unchanged in the new variables. It is said the equation

is invariant under the transformation. Symmetries or inva_ant transformations are
properties of the equations and not of the boundary conditions, which are usually

not invariant. Symmetries and their consequences form some of the most fundamen-

tal properties of partial differential equations and illustrate many important features

of the underlying physics. The Navier-Stokes equations admit several symmetries,

each of them reflecting axiomatic properties of classical mechanics: time invariance,

rotation invariance, reflection invariance, two scaling invariances, pressure invari-

ance, material indifference, and generalized Galilean invariance, which encompasses
frame invariance with respect to finite translation and classical Galilean invariance.

Each of these symmetries is explained in Section 2.

For example, all known similarity solutions of the Euler and the Navier-Stokes

equations for laminar flows can be derived from symmetries (see Pukhnachev 1972).
Turbulent flows admit a wide variety of solutions derivable from symmetries. Some

of them, like jets and wakes, have global character (see e.g. Townsend 1976; Cantwell

1981) others only apply locally, e.g. in wall-bounded flows. Recently several new

scaling laws for turbulent wall-bounded flows were derived in Oberlack (1997a,b)
using symmetry methods, and all of these are local self-similar regions. A well
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known example, which is also among Oberlack's results, is the logarithmic law of

the wall which has a restricted validity near the wall region but can be found in

many geometrically different flows. All the known local and global turbulent scaling
laws can be derived from symmetries.

In order to reproduce all global and local self-similar turbulent solutions with

an SGS model in LES of turbulence, it is a necessary condition that all the above

mentioned invariance properties of the Navier-Stokes equations should be built into

the SGS model. This implies certain restrictions for the functional form of the
model.

In LES of turbulence not only the SGS model is constrained by symmetries, but

so also is the filer function. Vreman, Geurts & Kuerten (1994) investigated whether

certain filter functions preserve the classical realizability constraint by Schumann

(1977). The key result in their analysis is that the filter kernel has to be positive in

order to ensure positive turbulent subgrid kinetic energy. They concluded that the

spectral cut-off filter is not suitable for LES since the kernel is negative for certain
values of its argument. Symmetries of the Navier-Stokes equations imply further

constraints for the filter function to be derived below. Moreover, it will be shown

that the form of filter function is consistent with the finding of Vreman e* al..

The paper is organized as follows: In Section 2. all the known symmetries of the

Navier-Stokes equations are discussed. In Section 3 the concept of spatial averaging

is reexamined, and its implications for the SGS model and the filter function are

derived. In Section 4 several examples of proposed SGS models will be investigated

as to whether they obey or violate certain symmetries of the Navier-Stokes equa-

tions. Section 5 gives a summary and conclusions of the paper. In Appendix A

the effect on near-wall scaling laws will be investigated for the case when the SGS
model does not satisfy the proper scaling symmetries.

2. Symmetries of the Navier-Stokes equations

The Navier-Stokes and the continuity equations for an incompressible fluid writ-

ten in primitive variables in a Cartesian coordinate system are

0Ui Otti 0p 02Ui (_ttk

+ uk Oxk - Oxi + v-_x2t and Ox---k= 0, (1)

where z, t, u, p, and v are, respectively, the spatial coordinate, time, the ve-

locity vector, the pressure normalized by the density and the kinematic viscosity.

Equations (1) admit several symmetries, each reflecting fundamental properties of
classical mechanics. In the following a list of all known symmetry transformations

will be given which preserve the functional form of (1) written in the new variables,

subsequently denoted by "*"

L Time invariance

An arbitrary time shift of the amount a

t*=t+a, z*=z, u*=u, p*=p, v*=v (2)
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has no effect on the functional form of (1).

II. Rotation invariance

Rotating the coordinate system and the velocity vector

* Aijuj, p* = p, v* =t* =t, x*--Aijzj, u i -- v (3)

by a finite but arbitrary angle in space, where A is the rotation matrix with AA T =

ATA -- I and [A[ = 1, preserves the form of Eq. (1) in the new variables after

multiplying the momentum equation with A. The superscripts T, I, and [. [ denote,

respectively, the transpose of a matrix, the unit tensor, and the determinant.

III. Reflection invariance

The reflection symmetry in any direction x_ is given by

x*_=x_ ,u*_=u_ with fl_a, p*=p, v*=v, (4)

where the index a can be any of 1, 2, and 3, and/9 refers to the remaining two.

IV. Generalized Galilean invariance

Substituting

d& d2_

u*=u+_-, p*=p-Z.-d-_ and v*=u (5)

into (1), where &(t) is any twice differentiable time dependent vector-function, does

not alter the functional form of (1). (5) covers two classical symmetries: (i) Invari-
ance with respect to finite translation in space is obtained for _(t) = b, where b is

a constant and (ii) the classical Galilean invariance is recovered if $(t) is a linear
function in time.

All symmetries (2)-(5) are also admitted by the incompressible Euler equations.

V. Scaling invariance

Considering v = 0, the two-parameter transformation

t*= z* = 3'z, u" = p* = v (6)

is an invariant transformation of Eqs. (1), where _ and "y are arbitrary positive

real numbers. If v # 0 and v is considered a parameter, then (6) is only a scaling
invariance provided 7 2 = _.

Considering v as an additional independent variable, the full two-parameter scal-

ing invariance (6) for v # 0 is recovered if v is scaled as

3,2

v*= (7)
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The two scaling groups corresponding to _ and _ refer to the fact that in classical

mechanics time and space can be measured arbitrarily. Hence, scaling symmetries
are equivalent to dimensional analysis.

VI. Pressure invaxiance

An arbitrary time variation of the background pressure, here denoted by T(t),
does not affect an incompressible flow. The corresponding symmetry transformation

is given by

t*=t, x*=z, u*=u, p*=p+_o(t), v*=v. (8)

VII. Material indifference

Consider the Navier-Stokes equations in a constantly rotating frame with a rota-

tion rate _a about the xa direction and where all velocities only depend on xl, x2,

and t. The particular choice of the axis of rotation is not restrictive because of the

transformations (3) and (4). The transformation which leaves (1) form-invariant is

given by

q 3 2 2p* =p+2D3 (u,dx2-u2dx,)--_3(x , +z_), u* =u (9)

where B(t) is the rotation matrix with BB T = BTB = I, [B[ = 1, BikBik =

¢3ijf_3 and _3 is a constant. The line integral along the arbitrary curve Q in the
pressure transformation represents the usual two-dimensional stream-function. The

property of material indifference can be reversed if turbulence undergoes rotation-

like advection. This can be accomplished either by system rotation or stream-line
curvature. In this case turbulence tends to become two-dimensional with the axis

of independence aligned with the axis of rotation.

All the symmetry transformations have been obtained by group analysis, ex-

cept for the reflection symmetry (4), which does not form a continuous group.

Pukhnachev (1972) computed the first complete list of all continuous point symme-

tries (2), (3), (5), (6), and (8) by Lie group methods (see e.g. Ibragimov 1994,1995).
Unal (1994) added the scaling of viscosity (7). The transformation (9) is a well

known property of two-dimensional flows (see e.g. Batchelor 1967). l_rom group

theoretical methods, it was first derived by Cantwell (1978). He computed it us-

ing Lie group analysis applied to the scalar stream-function equation of the two-

dimensional Navier-Stokes equations. In this approach the symmetry (9) is a clas-

sical point symmetry while in primitive variables it is a non-local symmetry. A

corresponding symmetry in three dimensions may not exist. In Oberlack (1997e)

it was shown that the three-dimensional Navier-Stokes equations in vector-stream-

function formulation admit only those symmetries which can be derived from the

Navier-Stokes equations in primitive variables. Recently, additional non-classical
symmetries have been obtained by Ludlow K: Clarkson (1997). However, these

symmetries are not invariant transformations in the classical sense but instead can

only be used to obtain self-similar solutions of the Navier-Stokes equations.
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3. Invariant modeling and filtering

In contrast to the classical Reynolds averaging, in large-eddy simulation of tur-

bulence the averaging procedure is a spatial filtering defined as

_['1(_) = fv G(z, y)[.l(y)d3y. (10)

The kernel G is normalized as

vG(Z,u)d3y = 1 (11)

and G is assumed to be sufficiently smooth and decays rapidly enough for large
distances y so that the integrals converge.

In the present context f represents the instantaneous variables u and p. f is

decomposed as

f =/+ f' (12)

where

/= (13)

Introducing the decomposition (12) for both the velocity and pressure into Eqs. (1)

and applying the filter (10) leads to the equation of motion for the large-eddies

Ofik
O_i _ Ofii O_ 02fii Orik and _ = 0. (14)

The SGS stress rik is given by

rik = Lik + Cik + Rik,

where

(15)

Lik=ui_k -- uiut, (16)

C,}=u_}+_iu_, (17)

' ' (lS)Rik=UiU k.

Lik, Cik, and Rik are, respectively, referred to as the Leonard stress, the subgrid-

scale cross-stress, and the subgrid-scale Reynolds stress. If explicit filtering is em-

ployed, the Leonard stress may be computed from the flow field, and closure models
only need to be introduced for Cit and Rik. Though the decomposition of v is ar-

bitrary, (16)-(18) is a very common notation in LES. A different decomposition has

been proposed by Germano (1986) because it was found by Speziale (1985) that
both Lik and Cik are not Galilean invariant as discussed below.

The principal assertion of this work is given by the following statement: To

derive a physically consistent large-eddy model for turbulence the filtered Navier-

Stokes equations (14) with the SGS closure model must admit the same symmetries

as the Navier-Stokes equations (as given in section 2).

This has certain implications for the form of the model for (16)-(18) and puts

restrictions on the filter kernel G in (10) to be derived in the next two sub-sections.
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8.1 Implications for the subgrid-scale stresses

Suppose the filter (10) preserves the invariance properties of Navier-Stokes equa-

tions, then one can deduce from (14) and (15) that

where

and

Of_* . OfL_ 0_* u* 02fL* Or*k
+ - Oxr+ Ox.2

T*k = L* k "t- Ci* k -q- R_k ,

and 0fi_._ = 0 (19)
0z_

(20)

L**k= fi,*'fi_ - u_fil, (21)

Ci*k = ""*_* -* '* (22)

R_k '* '* (23)_ZiU k.

and "*" refers to any of the symmetry transformation variables in Section 2. The

following is a list of all constraints for the SGS model to properly reproduce all

symmetries of the equations of motion.

L Time invariance

From (2) it can be deduced that the resolved and the unresolved quantities trans-
form as

t*=t+a, _*=x, _*=fL, u I*=u I, p.=ff, p,.=pl, v*=u, (24)

which leads to the transformation rule for the stresses

r*=r or L*=L, C*=C and R*=R. (25)

Any model which is autonomous in time complies with this restriction. This is

almost always guaranteed since common models are expressed as functionals of x
and fi only.

II. Rotation invariance

From (3) one can conclude that the rotation invariance for the large scale and

small scale quantities are given by

* = -*=Aijfij, '*=Ai)u_, p*=/5, p'* p', u*= (26)_* : t, X i Aijxj_ u i u i = v.

As a consequence, the stress tensor (15) and its components (16)-(18) need to
transform as

r_k = Ai,nAk.r.,.,

Li*k = AimAknLmn, Ci*k = AimAknCmn and R_k = AimAknRmn. (27)
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This is always guaranteed if the model is formulated in a "tensorially correct"
manner. The author is unaware of any existing model that violates this property.

III. Reflection invariance

Considering reflection in the xa-direction, one can infer from (4) that the filtered

and subgrid quantities transform as

-- - I * I

t*=t, z'_=-z_, u_=-us, u_ =-u_,

z;=x# ,fi;=fi_ ,u'_*=u'_ with fl#a, p*=p, u'=u, (28)

where a and /3 are defined according to the definitions below (4). Hence, the

reflection symmetry is preserved if

where _w = -1 for i=a V k =a A i # k (29)
T_k w = 1 else(

Similarly, one has the additional restrictions

Li_ = wLik, {C.:1, = wC_l,, where w = -1 for i = _ V k = a ^ i # k (30)

R_k = wRik w = 1 else

It appears that all common SGS models comply with reflection symmetry.

IV. Generalized GMilea_ invarla_ce

Generalizing Speziale (1985), (5) and (12) are used to obtain

d_ d2_
t* = t, z* = z+_(t), _* = a+-_, _t'* = u', p* = _-z.-a-_-, p'* = p',

From the latter result and (20), one can verify that

r" = r. (32)

As pointed out by Speziale (1985), a corresponding simple transformation does not

exist for (16)-(18). Using (31) in (21)-(23), we find

d_:i..-7 ..--.Td:_k
Lh = L_k - --_-uk -- ui--_-

d_ _d_h
Ch = C_, + -_-_, + _-dT

Rtk = R.,.

(33)

(34)

(35)

Hence, Lik and Cik are not form-invariant, but their sum is. Germano (1986) tackled
the latter problem by redefining the turbulent stresses. He introduced modified

definitions for the quantities L, C, and R where each separate term is Galilean
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invariant. Since the decomposition is not unique, it appears to be preferable to test
the entire SGS model for 1" for Galilean invariance.

The requirement of Galilean invariance has nicely been demonstrated by H/irtel

& Kleiser (1997), who have compared Galilean and non-Galilean invariant models

and different filter functions. The most striking result of their computation was a

negative dissipation if the model was not Galilean invariant.

V. Scaling invariance

From (6), (7) and (12) one finds

t*=_t, a:*='yz, u*=-Tfi, u'*=_u',

p*= _, p'*= p', v'=---(v. (36)

Applying these results to (20) yields

v* = "r. (37)

Similarly one can deduce from (21)-(23) that

L*= L, C*= C and R*= R (38)

has to be valid for any SGS model. It will be shown later that (37) is violated by
the classical Smagorinsky model. In Appendix A it will be demonstrated by inves-

tigating the two-point correlation equations that this symmetry breaking produces
incorrect statistical results, particularly in the near-wall region.

VI. Pressure invariance

The pressure invariance (8) should also be observed by the filtered quantities
which leads to

t*=t, z*=z, fi*=fi, u'*=u', p*=p+_,(t), p'*=p', v*=v, (39)

Since SGS models are usually modeled in terms of velocities, the pressure invariance

does not give any restrictions on the stresses L, C, R and r.

VII. Material indifference

From (9) mad (12) one can conclude that

,. = B,i(t),6,-* = B0(t)aj + _}_j(t)xi, u_t* =t, x_ = Bij(t)xj, u i

p* = p -I- 2 _3 fQ (uldz2 - _t2dxl ) - 3 02( ,,.2i"'aw', + x_), (40)

p'" = p' + 2_3f,_(u;d_ - ,'_d,1), ,,"= v.
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where B(t) obeys the definitions given below (9). Using the above relations in (20),
one finds that an SGS model captures material indifference if

rh = BimBknr,_n. (41)

As in (33)-(35),the separatedstresses(16)-(18)are not form invariant.Using (40)

in (21)-(23) it can be concluded that the separated stresses Lik and Ci_ are not
form invariant under constant rotation rate and hence

R*k = Bi,,,Bk,, R,_,,.

(42)

(43)

(44)

However, the sum of Lik and Cik is invariant. Employing the modified definition of

the stresses as introduced by Germano (1986) leads to form invariant stresses under

constant rotation rate in the sense that the last two terms on the right-hand side

of (42) and (43) disappear.

3._ Implications for the filter kernel G

In order to incorporate the symmetries of the Navier-Stokes equations in the

large-eddy model, one needs to show that the transformation properties of u and
p are preserved for the filtered quantities _t and/5. This restricts the form of the

filter kernel as will be shown subsequently.

Time invariance (2) is always preserved no matter which filter kernel is chosen in

(10) because t does not explicitly appear in G.

Generalized Galilean invariance (5) implies a restriction on the form of the filter

kernel. Consider the Galilean invariance of the filtered velocities 12" = u + dd_/dt

given in (31). Employing the definition of the filter (10), one obtains

. a(x', _')_*(y')d3u • = C(x, y),,(_)d3_ + _7" (45)

Since the instantaneous unfiltered velocities admit the generalized Galilean invari-

ance, (5) can be substituted into the left-hand side. This yields

a(_ + 4, y + 4) u(y) + -g( d_ = a(_, y),,(y)d_y + -d-i-" (46)

Because of (11), di_/dt cancels on both sides, and hence for arbitrary u the integrals

are equal, provided

C(_ + 4, Y + 4) = a(_, y). (47)

This functional equation can be transformed by differentiating with respect to 4.

The resulting first order partial differential equation has the unique solution

G = G(x - y). (48)
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An additional restriction on G is given due to frame invariance with respect to

a fixed rotation. From the rotation invariance of the filtered velocities flit = Aijfij

given in (26) and the definition of the filter, one can deduce that

/v. G(z* - U*),4(lt*)dsy* = a,i /vG( r -  t)uj(u)dSy. (49)

Employing (3), which results in dSy * = d3y, the two integrals are equal except for

the filter kernel. Hence, in order for (26) to hold for arbitrary ui, the condition

a(A(x - y)) = a(x - y) (50)

must be satisfied. For arbitrary A, the latter functional equation has the unique
solution

a = a(l - (51)

This corresponds to a known result from tensor invariant theory (see e.g. Spencer

1971): a scalar function depending on vectors or tensors can only depend on their
scalar invariants. Tensor invariant theory is widely used in Reynolds averaged

modeling; e.g. the scalar coefficient in the pressure-strain model depend only on
scalar invariants. In (51) G depends only on the magnitude of the separation vector,

which is the only invariant of a single vector. An additional consequence of (51) is

that the averaging volume V in (10) is restricted to a sphere with center x.

The last restriction on G follows from scaling invariance (36). For the present

purpose the filter function G is not normalized, denoted by the superscript "="

Using (10) one can conclude from (36) that

fv. G"(I x_ - Y'I)u*(Y') d3y* "7fv G"(I z - YI)u(y)dSY (52)
fv. G"(iz* - y'l)dSy" = fv a"(l - ltl)dSy

and a corresponding relation for the pressure, not shown here, needs to hold. Using

(6) the spatial scaling factor 7 remains in the argument of G u on the left-hand side

of (52). As a result, 7 can only cancel out for arbitrary u if G u has the following
form

GU([x - y[) = A[x - yl _' (53)

where A and c_ are arbitrary constants. Using (11), the final form of the filter G is
obtained

+ 3 f,_ iz _ ylat.l(y)d 3y, (54),

where 7"¢t refers to a sphere with center x and radius I. (54) preserves all the

symmetries in section 2. If the integration argument is sufficiently smooth, the

integral converges for all a > -3.
The time invarianee, the reflection invariance, the pressure invariance, and the

material indifference, even though not explicitly considered during the derivation,

are consistent with (54).
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The constraint for the filter function needs to hold for any filter operation used

in LES. However, in practice it is only relevant for schemes that utilize an explicit
filter, e.g. in the test filter used in Germano et al. (1991). In some LES models the

actual form of the filter kernel does not appear explicitly in the computation, and
the constraints for the filter derived above are irrelevant.

The restrictions on the filter kernel derived in this sub-section are rarely met by

the filtering procedures used in practical applications. For computational conve-

nience, explicit filtering at a given location is often performed by averaging values

from adjacent grid points. As a result, in many applications, such as near-wall

shear flows, the grid is highly anisotropic, and condition (26) is violated. To inves-

tigate this matter of grid dependence in LES, some empirical tests were performed

by Scotti e_ al. (1997) to determine whether anisotropic meshes have an effect on

isotropic turbulence. They show that on an anisotropic pencil-like grid, isotropic

turbulence was severely influenced in an unphysical manner. However, by isotropiza-

tion of the test-filter many of the features of isotropic turbulence could be restored.

This result suggests that the isotropic filter kernel (51) may restore some of the

physical properties of turbulence in large-eddy simulations.

4. Invariant properties of proposed large-eddy models

Almost all of the existing SGS models for large-eddy simulation of turbulence

which have been proposed have the functional form:

(55)

In order to capture all of the invariance properties of the Navier-Stokes equations,

(55) should reflect the same symmetries. Hence it is a necessary condition to have

= (56)

for all the transformations listed in Section 3.1. Nearly all SGS models proposed

in the literature conform with time translation, rotation, and reflection invariance.

However, as was first investigated by Speziale (1985), several SGS models (Birin-

gen & Reynolds 1981, Moin 8z Kim 1982, Bardina, Ferziger & Reynolds 1983) are

not Galilean invariant and, therefore, are also not invariant under the generalized

Galilean transformation (5). In the present investigation it will be shown that sev-
eral of the proposed SGS models are not scale invariant and not material indifferent.

However, it will be demonstrated that a certain class of models, namely the dynamic

models, obey all invariance properties derived in Section 3.

One of the most widely-used models in LES, the Smagorinsky model (Smagorin-

sky 1963), violates scale invariance but captures all other known symmetries. It is

given by

1

where _¢,k = fi\Oxk + "_x,]" (57)
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A is the filter width which is usually taken to be a function of the local grid spacing.

In order to see the shortcoming of (57), Eqs. (36), (37), and (57) are used in (56)
to yield

1

rik - _i,r,,,, = -CA_lSlSik7 -_. (58)

The latter expression is not form invariant since it is dependent on the arbitrary

scaling parameter 7- The reason for this problem is the explicit external length

scale that has been introduced into the model, which is not related to any turbulent

length scale. This imposed length scale is particularly damaging in turbulent wall-

bounded flows. To overcome this problem empirical wall-damping functions have

been adopted to obtain reasonable results in the near-wall region. Wall-damping

functions are widely used in conjunction with Reynolds averaged models. There,
it has long been known that this approach is not frame invariant, and several new

ideas have been put forward to overcome this problem.

Several new near-wall self-similar solutions or scaling laws have been derived in

Oberlack (1997a,b) which rely heavily on the scaling symmetry. All near-wall scaling

laws may be captured in a large-eddy simulation of turbulence when the symmetry

properties of the Navier-Stokes equations are preserved by the model. In Appendix

A it is shown by analyzing the two-point correlation equation that the Smagorinsky
model is not able to capture important near-wall sealing laws. It can be concluded

that any model which contains a fixed external length scale, and which does not

account for the proper turbulent length scale, will violate the scaling symmetry.

Since the Smagorinsky model is only written in terms of the strain rate S, material

indifference is guaranteed.
A model which violates both scale invariance and material indifference is the

structure-function model by Mdtais & Lesieur (1992). The latter problem has al-

ready been reported by Meneveau (1996). The proposed SGS model is of the form

1
ri_ - -_aikr,.,. = cSFA((u(_ + r) - _(_))2)'12Sik (59)

where C sF, and () are, respectively, a model constant and a spatial average. Using

the condition (56) in conjunction with the transformation (40) and (41) yields

1
Vik -- 5_Sikrrnm = cSF A((a(m)(Z ac r) - a(m)(X ) -- eat(m)£arl)2)½ Sik. (60)

The latter expression is not of the form (59) since it contains an additional rotation
term. Hence, the structure-function model is not materially indifferent. As for the

Smagorinsky model, one can also show that (59) is not scale invariant.

A class of SGS models which have a similar deficiency are those explicitly con-

taining the rotation rate

1_ij = _ \Oxj Oxi ]" (61)



Invariant raodelin9 in LES 15

Lund & Novikov (1992) derived the most general form of SGS model comprising all
possible combinations of the strain and the rotation rate tensors. They proposed a
model of the form

For the same reason as the previous two models, (62) is also not scaling invariant.

Violation of material indifference can be shown by computing the rotation rate (61)

under the transformation (40) which yields

[_j = Bi_BizRkl + e_,ijftk (63)

Using this in (62), the required form of (41) under constant rotation cannot be

recovered since the frame rotation term, i.e. the last term of (63), does not cancel
out.

An SGS model which captures all the invariance requirements derived in Section

3 is the dynamic subgrid-scale model of Germano et al. (1991). They proposed a

procedure which, used in conjunction with the classical Smagorinsky model, results
in the following SGS model

(64)

Here, all the tilded quantities refer to the "test"-filter

h(z) =/v _(='g)h(y)d3y' (65)

which corresponds to the filter length _x and/_ > A. The test-filter quantities are

explicitly computed from the flow field. The resolved quantities are still denoted

by an overbar. The dynamic model contains the ratio of two length scales, which

is a dimensionless number, and therefore no external length scale is imposed to

break symmetries. Consequently, the scaling invariance (37) is recovered, as can be

shown by using (36), provided the proper filter function is utilized. It is straightfor-
ward to prove that frame invariance, generalized Galilean invariance, and material

indifference are also captured by the dynamic model.

Since its publication by Germano et al. (1991), several modified versions of the

dynamic model have been proposed. The model by Lilly (1992) keeps the Smagorin-

sky model as the base model, but the dynamic procedure is modified. Zang et
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al. (1993) used the mixed model, first introduced by Bardina et al. (1983), as a

new base model. In addition, they employed Lilly's modification of the dynamic

procedure. Yoshizawa et al. (1996) developed a new base model and also adopted

Lilly's modification of the dynamic procedure. The dynamic mixed model by Zang

et al. is further extended by Salvetti &: Banerjee (1995). This new model contains

two parameters which are both computed with a modified dynamic procedure. It

can easily be shown that all the latter modified versions of the dynamic model cap-
ture the symmetry requirements developed in Section 3. It should be noted that

the dynamic procedure only restores scaling invariance, which may be violated by
certain base models. Other deficiencies such as the violation of Galilean invariance

or material indifference cannot be repaired by the dynamic procedure.

So far, it was tacitly assumed that the symmetries are not broken by the filtering
process. However, some of the common filter functions are not consistent with the

symmetries of the Navier-Stokes equations. One of these is the Gaussian filter

G = 7r3/2A------S exp , (66)

since it does not match the form (54). The scaling symmetry is violated by (66).

Another common filter function which is not consistent with the form of (54) is
the spectral cut-off filter. In physical space it is given by

3 sm X(zi-Yi)
G= l'I ;51: y,)

i=1

(67)

(67) violates both rotation and scaling invariance. It has already been pointed out

by Vreman et al. (1994) that the latter filter should not be utilized as it may lead

to unrealizable results. In Liu et al. (1994) it was shown by analyzing experimental
results of a turbulent jet that (67) has a very prejudicial influence on the overall
statistical behavior of SGS models.

The classical isotropic top-hat filter

3 if Ix-y[<AG= (6s)
0 otherwise

is of the form (54) with a = 0. Hence, it preserves all symmetry requirements of

Navier-Stokes equations.

5. Summary and conclusions

The Navier-Stokes equations admit certain symmetries, that is, there are certain

form-invariant transformations which preserve the equations. These symmetries are
one of the most fundamental properties of the equations of motion. They reflect

many features of classical mechanics. It was shown recently that certain statis-

tical properties of turbulent shear flows follow from these symmetries (Oberlack

1997a/b).
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To capture those statistical features of the Navier-Stokes equations that are as-

sociated with symmetries, the symmetries should be built into the SGS models and

the filter functions in LES of turbulence. This leads to necessary conditions on the
functional form of the SGS model and the filter kernel.

One particular symmetry, scale invariance, is violated by the most common SGS

model, the Smagorinsky model, because it contains the grid size as an explicit

length scale. This seriously impairs the ability of the model to describe turbulence.
In particular, in near-wall turbulent flows it is known that the Smagorinsky model

performs poorly and wall damping functions have to be used. In Appendix A it
is shown that the violation of the scaling symmetry excludes important turbulent

near-wall scaling laws such as the log law and the algebraic law. Other models
such as the structure function model by M_tais & Lesieur (1992) violate material
indifference.

It appears that the dynamic Smagorinsky model by Germano et al. (1991) and

its successors (e.g. Lilly 1992, Zang et al. 1993, Yoshizawa et al. 1996, Salvetti
8z Banerjee 1995) conserve the symmetries of Navier-Stokes equations. In fact,

numerical simulations have shown (see Germano et at 1991) that the dynamic

model captures the proper near-wall behavior without introducing any artificial

wall treatment such as damping functions.

The symmetry restrictions for the filter function are severe in the sense that only a

very confined class of filters is allowed. For example, only a spherical filter function

admits finite rotation invariance. The consequences of anisotropic filter functions

may be illustrated by a simple example. Consider a simulation of homogeneous

turbulent shear flow where explicit filtering is employed. The integration domain of

the filter function may have the form of a box whose edges are aligned with the grid,

which is chosen to be parallel to the mean flow. In homogeneous shear the dominant

turbulent structures have a certain inclination to the mean flow. If the grid and the

filter were instead chosen to be parallel to this inclination, averaging would take
place over different flow structures. As a consequence, large scale quantities such

as the Reynolds stress tensor would exhibit different growth rates. Since a model

should be frame independent, the latter result is in contradiction to the basic physics

of the problem.

However, the practical implications may be less severe than they appear. Since

explicit filtering takes place on very few mesh points, the numerical truncation

error may be of the same order of magnitude as the error caused by a non-spherical

filter. Numerical tests for different applications need to be performed to determine

how closely the filter form given by (54) has to be matched. A first test towards
this requirement has been carried out by Scotti e_ al. (1997). An isotropized test-

filtering in conjunction with the dynamic model on a highly anisotropic pencil-like
mesh considerably improved the LES of isotropic turbulence.

An approach to overcome the very restricted form of the filter function may be
to introduce the strain rate into the filter function. Since the strain rate introduces

three additional directions corresponding to its principle axes, a more complex ge-

ometry for the filter volume may be in order.
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Another consequence of the required spherical form of the filter appears to be its

use in combination with wall-bounded flows. Close to solid walls the requirement

that the filter be spherical filter is always violated, and hence certain symmetries

are broken. However, the symmetries listed in Section 2 are only properties of

the Navier-Stokes equations. Symmetries are always broken by arbitrary boundary

conditions. One can conclude that a non-spherical filter near a solid wall is not a
restriction of LES, but a consequence of boundary conditions for turbulence models

in general.

It appears that future improvements for LES models should be along the lines
of the dynamic model since it mimics fundamental properties of the Navier-Stokes

equations. Despite its known superior performance, it has problems with stability
since the model coefficient in the SGS model may become negative. If the flow under

investigation possesses a homogeneous direction, averaging of the model coefficient

in that direction seems to stabilize the simulation. In more complex geometries

a clipping procedure is introduced which sets a negative model coefficient to zero.

However, the first approach may violate rotation invariance since a preferred direc-

tion has been introduced. The clipping approach seems to obey all the symmetry

properties of the Navier-Stokes equations but appears to be unrelated to Navier-

Stokes equations.
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Appendix A. Two-polnt correlation equation of LES models containing
an explicit external length scale

To investigate why SGS models containing an explicit length scale are inconsistent

with certain near-wall scaling laws, two-point correlation equations derived from

LES models axe analyzed. The standard Reynolds decomposition is given by

u = (u/+u' , /3 = (p) + p', (A1)

where the instantaneous velocity _ and the pressure p is assumed to be computed

by a LES in conjunction with a certain SGS model and (.) denotes an ensemble
average. Using this, several two-point quantities may be defined

t ij( ,l* ) .= (A2)

R(ik)j(x, 1")= Ri(jk)( ,r) -----(u_(_)u_(x('))u_(x(1)))(A3)

Pj(x, r) = (p'(x) Qj(z, r) = (A4)
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Using the latter definitions the two-point correlation equations are derived from

(14)

_ ORij
Rki O(U),Ox_R,k O<ub]Oxkix+,. -[(,,)k(,,,+,.,t)-(,,)k(,,,,t)] 0r,,

OPj OPj OQ,] OR(i,)1+ O [R(ik)j-Ri(j,)]

OS(it)j + 0 [S(ik)j - Ti(jk)] (A6)

where D/Dt = O/Ot + (u)kO/Oxk. The tensors in (A2)-(AS) are functions of the
physical and correlation space coordinates, z and r = z0) - z respectively. The

vertical line denotes the derivative to be taken with respect to x and evaluated at

z+r.

In Oberlack (1997a) the 22-component of the two-point correlation equations

emerging from the Navier-Stokes equations (A6 with S(ik)j = Ti(jk) = 0) for parallel
mean flows of the form (u) = ((u)l (x2), 0, 0) T was investigated. The entire system

contains one physical and three correlation coordinates and consists of equation

(A6) and two Poisson equations for Pj and Qi (not shown here). It was shown that
for four distinct mean velocity profiles similarity variables can be introduced so that

the number of independent variables is reduced by one.

The most general self-similar solution, with all group parameters different from

zero, is given by

rl + _ r2
rl = r2 =

•

(R22= X2+ql/

(/'2
= \_ + _/

( q, _3(1-._)R(2t)2 = x2 + _-1]

r3+ q3
_s = qi (AS)

x2 + q_-i4'

(A9)

J52, Q2= (X2+ql/

= q4_ a('-_) R2(2k).(All)
/_(2t)2, RT(2k) (x2 + qa ]

where the "~" correlation quantities only depend on (AS). From (A7)-(All) one

can conclude that scaling of the fluctuation velocity is according to

l_qAk

u'= (x2+ q_-_l4) ,1 u.̂' (A12)
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The second similarity solution is given by ql = qs, which corresponds to the

log-law and (A7) changes to

fil = q---_ln (x2 + q-_l) + C2'ql (A13)

while the similarity coordinates (A8) are unaltered and the correlation functions

R22, P2, Q2, R(2_)2, and R2(2k) are un-scaled.
If ql = 0 and q5 # 0, the exponential law holds and the new similarity variables

are given by

_l=Csexp -qsx2 +--,
k q4 / q5

q3_1 = rl + _x2, _2 = r2, _a =ra + --x2,
q4 q4

-3.111.z2 : _ -3 !/I.z2 r_
P2=e ,4 -'2, Qu=e °._ _2,

--3fSXlG --3fst2 _,
R(2,)2 = e ,., _(21,)2, R2(2,) =e ,4 tt2(2k).

(A14)

(A15)

(A16)

(A17)

(A18)

where similar to (AT)-(All) the "-" correlation quantities only depend on (A15).
It can be concluded that the fluctuation velocities scale as

_l -- "_-Ag 2 ^l=e ,* u. (A19)

Finally, if ql = q5 = 0, the mean velocity is given by

fil = qTx2 + C4 (A20)

while the similarity variables (A15) are the same as for the exponential case, but

the correlations R22, P2, Q2, R(2k)2, and R2(2k) stay un-scaled.
In order to see that some common SGS models are not consistent with the latter

scaling laws if they contain an explicit external length scale, the Smagorinsky model

will be investigated. Suppose (57) is substituted for 1" in (A2)-(A5), then S(ik)i and

Tiok) will read as follows

s(,,)Az, r) =

T,(i,)(z, r) =

(A21)

(A22)

Here S is computed from (57) while for t2 the Reynolds decomposition (A1) is used.

Using (21)-(22) in Eqs. (A6) leads to a reduced set of possible self-similar solu-
tions. From the above-mentioned four scaling laws, only two allow for self-similarity
so that the number of independent variables reduces by one. These two scaling laws

are the exponential law (A14)-(A18) and the linear law (A20). Both have been
derived under the assumption that there is an external symmetry breaking length
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scale in the flow and no scaling with respect to the coordinates exists. It is strvfight-

forward to show that the algebraic law (A7) and the logarithmic law (A13) are no

longer self-similar solutions of the system (A6) if (21)-(22) is employed.
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Validation of large-eddy simulation

in a plain asymmetric diffuser

By M. Fatica, H.-J. Kaltenbach 1 AND R. Mittal 2

Motivation

The main motivation for this study comes from the need to validate wall-resolving

LES with the dynamic model in the case of a spatially evolving flow with mild

separation.

With the increase in computing power, more complex flow configurations are

being investigated by means of three-dimensional, unsteady numerical simulation.

The concept of large-eddy simulation (LES), in which resolved and subgrid-scale

motions are defined by a spatial filter applied to the Navier Stokes equations, has

emerged as a promising tool which complements Reynolds averaged Navier Stokes

(RANS) computations. The development of the dynamic SGS-model by Germano

et a/.(1991) was a major advance towards a general model which is applicable to an

arbitrary flow and does not need adjustment of model parameters.

An important class of flows which has not been simulated extensively with the

LES technique is the pressure driven separation from a smooth surface. Mildly sep-

arated flows have always been a challenge for experimentalists as well as modelers.

Experimental research on separated flow physics was hindered by the fact that

conventional hot-wire technique is direction insensitive and requires a significant

mean flow component to produce reliable measurements. With the increasing use of

the LDA technique more data sets of separated flows are becoming available which

are suitable for validation purposes. A particularly interesting configuration was

investigated recently by Obi et al. (1993a, 1993b), using a single-component LDA:

a fully developed turbulent flow from a long inlet duct enters a plane, asymmetric

diffuser with an opening angle of 10 °. The flow separates about half way down the

deflected wall, and a separation bubble forms which extends into the straight outlet
duct where the flow reattaches.

This flow has several desirable features which make it a good test case for vali-

dation of a computational technique such as large-eddy simulation:

a) The flow belongs to the class of 'mild', pressure-driven, separation from a

smooth wall. Many technical devices are designed to operate close to these

conditions since optimum performance is often achieved when the flow is at

the verge of separation.

b) The flow exhibits rich flow physics, such as the combined effect of adverse

pressure gradient and curvature near the diffuser inlet and incipient separation
and reattachment in the outlet duct.

1 Technische Universitaet Berlin

2 University of Florida



24 M. Fatica, H.-J. Kaltenbach _ R. Mittal
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0 76

FIGURE 1. Computational domain for the plane diffuser. Only a subset of the
actual grid lines is plotted.

c) The inflow conditions are unambiguously defined. The inlet duct has a length

of more than 100 duct heights, thereby guaranteeing that the flow entering

the expansion is a fully developed turbulent channel flow. For validating the
computation of a spatially evolving flow, it is crucial to know the upstream

conditions with a high degree of accuracy.

d) The wall-shear based Reynolds number of the incoming channel flow is Rer =

500. Although a direct simulation of channel flow is feasible at this value, a
DNS of the full diffuser is still prohibitively expensive. The Reynolds number is

high enough that the flow does not depend much on this parameter. Obi (1994)
did not find significant changes of flow physics when doubling the Reynolds
number.

During the course of the work, a closer examination of the experimental dataset

from Obi et al. (1993a) revealed some inconsistencies. Basic requirements such
as mass and momentum balance of the 2D mean flow were not met in the rear

part of the expansion (Kaltenbach, 1994). As a result of this, it was felt that an

independent confirmation of the experimental data was highly desirable. Therefore,

a configuration similar to Obi's rig was built, and great care taken to ensure that the

data set satisfied basic requirements for validation purposes (Buice & Eaton, 1996,

1997). For simplicity we refer from now on to the Obi and the Buice experiment,
respectively.

Flow configuration

The diffuser geometry as shown in Fig. 1 and Reynolds number Reb = Ub6/U =

9000 match the experimental configuration of Obi and Buice. Here, the Reynolds

number is based on the bulk velocity Ub found in the inlet duct of height h = 26.
The parallel flow from the inlet duct enters the asymmetric diffuser characterized

by an expansion ratio a = hout/hin = 4.7 and by an opening angle of 10 degrees.

The expanding section extends over 426 and is followed by a tail-duct of height
9.46. With the tail-duct extending over approximately 306, the exit plane is located

near x/6 = 75. At this location the flow has reattached but is far from being in

equilibrium. In the present study we focus on the separation and reattachment and

not on the recovery into a canonical channel flow, which occurs over a length of tens
of heights of the exit channel.

Simulations were performed on three different meshes and for domain widths of

46 and 86 in the spanwise direction. The mesh is stretched in the streamwise and
wall-normal direction. Details on the numerical method axe given in Fatica & Mittai
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(1996).

Computationally, this flow is very challenging because of the large range of

timescales encountered. The inertial time scale r = 0.5h(x)/Ub(x), based on lo-

cal diffuser height h(x) and bulk velocity Ub(x), is proportional to the square of the
expansion ratio, i.e. rout = a2ri,. At the same time, the computational time step

is limited by the need to resolve the turbulence in the inlet section. The net effect

of the time-scale disparity is that the simulations require very lengthy integration
times.

In this brief, we will compare results from two simulations on a domain with

a spanwise dimension of 8_f. On the medium mesh (272 × 64 x 96) the inflow
profile has a ratio of centerline to bulk velocity Uc/Ub = 1.12, while on the fine

mesh (352 x 64 × 128) the ratio is equal to 1.14, the same value as reported in the
experiment of Buice. Before sampling statistics, the simulation is run for an initial

period corresponding to approximately one flow-through time in order to flush out

the initial transients. Statistics were then sampled over a period of 1080 tin or 7

flow-through times for the simulation on the medium mesh. The fine simulation

is not finished yet and only 3 flow-through times were used. Mean quantities are

obtained as averages over both the spanwise direction and time.

Validation of simulation results

The present work aims at exploring the capability of LES for accurate quantitative

prediction. For this purpose we compare simulation results with measurements from

Obi et al. (1993a, 1993b) and Buice & Eaton (1997).

Evaluation of experimental data sets

Meaningful comparison between simulation and experiment hinges on the as-

sumption that the same flow is being studied. Ideally, this requires a match in

geometry, inflow and outflow conditions, and Reynolds number. The present state

of high-resolution numerical simulations makes it desirable that the computed flows
be homogeneous in at least one spatial direction. In a spatially evolving flow such

as the diffuser flow, the spanwise direction is considered to be homogeneous. It is

hoped that flow physics will become independent of the chosen spanwise domain

size once the computational box is wide enough. In this direction periodic bound-

ary conditions can be applied, which is advantageous from a numerical point of

view since highly accurate Fourier expansion based methods can be employed. Fur-

thermore, averaging statistics in the homogeneous direction reduces the required

sampling time considerably, and this results in significant savings in terms of CPU
time.

To set up an experiment of a flow which exhibits spanwise homogeneity remains

a challenge. Once the flow separates, the inherent three-dimensionality resulting

from side walls of an experimental facility often increases significantly. By choosing
configurations with wide aspect ratios, it is hoped that effects from unavoidable

secondary flows will be small and will not affect the core region, which should

represent a nominally two-dimensional flow.
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Assessment of suitability of Obi's data for validation

Obi et al. (1993a,b) investigated flow in an asymmetric diffuser using LDA in

a wind tunnel. They measured pressure along the flat wall, mean velocity, and

Reynolds stresses. The aspect ratio of diffuser inlet and outlet was 1:35 and 1:7.45,
respectively. The inlet channel was slightly wider than the diffuser in order to

prevent thick sidewall boundary layers from entering the expansion. Buice employed

the same technique. In order for the fluid to enter the side slots, the pressure in
the slots has to be slightly lower than the ambient pressure. Buiee achieved this

by obstructing the diffuser exit, thereby raising the average pressure level in the

diffuser. Nothing similar is reported for the Obi experiment. Therefore, some

doubt remains about the conditions at the diffuser inlet of Obi's setup.

Measurement errors for U and Reynolds stresses are estimated to be 0.7% and

2.6% respectively (Maeda et al. 1995). Mean flow profiles are two-dimensional
within 5% of U over 90% of the inlet duct and 60% of the outlet. The mean flow

profile measured 226 upstream of the diffuser throat in the inlet channel is slightly
asymmetric. However, the ratio of eenterline to bulk velocity at this location is

1.14, which matches closely the prediction by Dean (1978).
The flow-rate per unit width m = f-U(y)dy computed from profiles measured

along the center-plane is plotted in Fig. 2. Up to the end of the expansion near

x/6 = 40 the flow-rate is constant within a 2% error band. As the flow leaves the

expansion and enters the outlet section the flow-rate increases rapidly. This might
indicate that significant secondary flow develops in the outlet section. Obi's data

have been made available on ftp-server (Maeda 1995); there, velocity data were

scaled in a way such that global mass conservation is guaranteed at every station.

We will use the scaled data for comparison with simulation results, keeping in mind

that profiles measured downstream of x/3 = 40 should be only used for qualitative
comparison.

A special remark is required with respect to proper normalization of pressure

measurements which are published in Obi(1993b). There, cp is given with respect to

a reference velocity Ur_l. Since we choose to present all our data with respect to the

bulk velocity of the incoming channel flow, we need to know the ratio Ur_I/Ubutk.
Obi et al.(1993b) state that the reference velocity corresponds to the centerline

velocity of the inlet duct. However, the mean flow profile measured in the inlet

duct at x/6 = -22 reaches a peak of 0.975Urei (see database of Maeda et al. 1995).

Thus Urn! = 1.025Uc_,t, and with Uc_nt/Ub_lk = 1.14, the conversion of cp given
with respect to U_ I into cp with respect to U_,_tk involves multiplication with the

square of U_,I/Ub_tk = 1.168. The use of an incorrect reference velocity in Obi
(1993b) has been corroborated recently.

Assessment of suitability of Buiee's data for validation

The overall dimensions of the experimental facility of Buice (1997) are similar to

Obi's setup. The novel feature of this experiment is the fact that the pressure level
in the facility was raised through exit blockage, thereby allowing careful control

of sidewall boundary layer leakage through slots immediately ahead of the throat.

Velocity was measured in air with a hot-wire technique, using single and cross wire
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FIGURE 2. Flow rate f'Udu/(26Ub) from experiments by Obi (o) and Buice (o).

Ub is the bulk velocity of the inlet channel. Error bars mark 3% deviation.

in regions with significant forward flow and pulsed wires elsewhere. The maximum

error in mean velocity is 3%. Flow rates obtained from integration of velocity profiles

measured with single wire upstream of separation and a combination of single and

pulsed wire elsewhere are plotted in Fig. 2. An increase in flow rate in the order of
5% occurs in the region downstream of x/_5 = 20, i.e. immediately behind the zone

of maximum pressure rise. Wool tufts mounted to the side walls did not indicate the

presence of secondary flow or sidewall separation. The mass-flow deviation in this

region is slightly greater than the confidence level for the measurements. No check

of spanwise homogeneity at this location is available. Downstream of x/_ = 34 the
mass is globally conserved within 3%, and the flow is uniform in the span within
3%.

Force balance

The integral momentum balance for a fixed control volume for the time- and

spanwise averaged force component Fx per unit depth is:

F= = (Fp,o=t - Fp,i.) + Fp,r=mp + FMic + (Fvisc,i. - Fvi.c,o.t) = M_. - Mo.t

The corresponding control volume consists of vertical cuts at xi,, = -4_f and at a

downstream position xout and follows the interior of both walls. With a denoting

the local angle between the deflected and the horizontal wall, the individual forces
read:

[top/ tout

FMic = rwcosa(s)ds, F.i.c = , M_ = /
./in J bot
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FIGURE 3. Individual terms contributing to the force balance from LES (_),

Obi (o) and Buice (n). Momentum flux difference -AM = -(M_. - Mo,,t) (lower

curves), residual Fp,,.t + FIric - AM (middle) and net pressure force Fp,n,t (upper
curves) are normalized by _fU_.

Here and in the remainder of the brief we set p = 1. For reference pressure Pr_f we
use the pressure at the lower end of the downstream control volume face. Pressure

difference force and ramp force can be combined into a net force Fp,net = Fp,out -
F_,i, 4- Fp,r_,,p, which expresses the net effect of pressure acting on all control

volume faces. The force Fi_ic,w is evaluated for both walls. The momentum flux

M consists of the three parts:

M=/-ff2dy+/-_dy+/_lldy

Since the deviatoric SGS-stress 711 is smaller than 2 x 10-sU_, it can be neglected
in the force balance for LES data. The isotropic part of the SGS stress enters the

balance through the pressure. We neglect Fvisc since the term scales with 1�Re and

OU/Oz << OU/Oy.

Computation of the force balance from experimental data requires some minor
modifications such as inserting additional data points near the walls where measure-

ments are scarce and interpolation of cp-values in x. We assume that the pressure
varies linearly across the duct for the experiment. The %-difference between wall

and interior resulting from the variance v 2 is on average -0.005 and has been ne-

glected for the experiments. Computing the force balance from LES results using

this approximation rather than the real pressure distribution leads to a residual in

the order of 0.045U_ in the outlet section. The friction force for the experiments is

computed using c t from the LES. Skin friction from the simulation follows closely

the measurements of Buice (Fig. 5), and the overall contribution to the momentum
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balance is less than 5% of the momentum flux difference between two control vol-

ume faces. The overall error introduced by these approximations is assumed to be
in the order of 5%.

Figure 3 depicts individual terms and residual of the force balance for both experi-
ments and simulation. The residual is below 1% of the momentum flux difference for

LES results, thereby validating the internal consistency of the simulation method
and the force balance evaluation. Since friction contributes less than 5% to the

momentum balance, the flux difference AM is mainly balanced by the net effect of

pressure, with Fp,ramp contributing about one third of the net pressure force.
The maximum residual for Buice's data set is 0.027_U_, which is below 1.5%

of the incoming momentum flux. This accuracy is remarkable considering the ap-

proximations involved. We found it to be crucial to use raw data, i.e. velocity
measurements which were not scaled to satisfy global mass conservation, in order

to obtain a small residual for Buice's data. Obi's data develop a higher residual

which exhibits a trend from negative to positive values with streamwise location

x/6. The positive values of the residual might come from neglecting the pressure
variation across the duct. Another source for the larger force balance residual com-

pared to Buice's data might be the use of scaled velocity data. Raw data were not
available for Obi's experiment.

Although the primary purpose of the force balance is a check of the consistency

of experimental data, we have included simulation results in Fig. 3. Since LES

and experiment have nearly identical incoming momentum flux, the difference AM
indicates how much outgoing momentum fluxes differ at the downstream control

volume face. LES and Obi's data agree well whereas Mz,oat is slightly higher for

Buice in the region 20 < x/5 < 30. Lower AM in Buice's data corresponds to

a smaller net pressure force downstream of z/_ = 20 compared to simulation and
Obj. Note that the enhanced momentum flux is consistent with the slight flow-rate

increase in Buice's experiment near x/6 = 25. Since LES and Obi have similar

cp-curves (see Fig. 5), the net pressure force should be close.
Overall, both experimental data sets satisfy mass and momentum balance of a

nominally two-dimensional flow within acceptable error bounds, which makes them

well suited for validation of a computational study.

Consistency check using BernouUi'_ Equation

As a consequence of conservation of energy, the total pressure cp + U 2 remains

constant along a stream-tube in an inviscid flow. In Fig. 4, this relation has been

evaluated for simulation and experimental data using cp along the upper wall and

the peak value of the streamwise velocity U at a given station. Included are data

from a RANS computation by Durbin (1994).

Figure 4 reveals that the Bernoulli relation holds only approximately in the dif-

fuser with viscous losses accounting for a 30% decrease over the length of the domain.

We find that computations and measurements exhibit about the same total pressure

with the exception of Obi's data, which fall short by about 5% of the total pressure

upstream of z/6 = 15. We attribute this deviation to the fact that raw data had

been scaled to satisfy global mass balance.



30 M. Fatica, H.-J. Kaltenbach _ R. Mittal

I I I I I

1.21 "_ Cp+ 2

0.8 . ^_

o cp

0.6

0.4

0.2 (_,.==lUb)2

0 J i i i i
0 10 20 30 40 50 60

FIGURE 4. Depicted are % (lower curves), V2a= (middle), and total pressure
--2

Cp + V,_,,, (upper curves) normalized by U_ for LES (_), Durbin's RANS

simulation (.... ), and experiments of Obi (o, A ) and Buice (t_, *).

Up to x/6 = 15, LES and Durbin's RANS simulation predict larger Umaz than

the experiments. However, both cases differ with respect to % as early as x/$ = 10.
Here, the limitations of the Bernoulli relation for the present configuration become

evident. Conversely, the deviation in % between LES and Obi on one side and Buice
on the other side is consistent with the larger values of Umaz found near x/$ = 25

in Buice's data. There, the flow rate was about 5% higher than in the inlet duct.

Although the Bernoulli relation is only an approximation, it helps to interpret
some of the results which will be shown in the following sections. Since the relation

between peak velocity Umax and pressure is quadratic, a seemingly small mismatch

in mean flow profile by e.g. 3% translates into a %-difference of 6%. This fact

highlights the enormous difficulty involved in accurate quantitative prediction of

this flow. If through the presence of secondary flow, for example, additional mass

flow is added to a given profile which then accumulates in the region where the

profile is peaked, even small fractions of the total flow rate are sufficient to increase

Uma, considerably, thereby changing the pressure coefficient strongly. It is also
evident that error bounds for measurements of Um,,, have to be rather small to

make data sets useful for validation purposes.

Comparison of I,ES with experimental data

Using the LES result as a reference, these plots allow comparison of both experi-

ments against each other. From Buice (1997) we use raw data, i.e. data scaled with
Ub measured in the inlet duct. Obi's data have been scaled in order to satisfy the

global mass balance. One should keep in mind that the uncertainty in the scaling

amounts to 15% downstream of x/_ = 40.
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Comparison of mean flow and pressure recovery

In Figs. 6 and 7 we compare profiles of mean streamwise velocity U, rms of ve-

locity fuctuations, and turbulent shear stress _'6 from simulation and experiments.

Results from two simulations obtained on different grids are included in these plots.
For the validation we restrict ourself to the data from the finest mesh.

Overall, the agreement of mean flow profiles between simulation and experiments

is quite good. Upstream of x/b = 10 the peak ve]ocity U,n_ of the simulation
is slightly above the experiments. This deviation is within the experimental error

margin. Between x/6 = 25 and x/6 = 35 the situation is reversed, i.e. the experi-
ments exhibit slightly higher peak velocities near the flat wall than the simulation.

Note that Buice's profiles have not been scaled to conserve mass, which explains

the deviation at x/6 = 25 where the flow-rate was 5% high.

The amount of backflow as well as the location and height of the separation bubble

agree well up to x/6 = 55. Reattachment and recovery occur further downstream

in the simulation as compared to the experiment. This translates into a mean

bubble length of 526 in the simulation compared to 476 in Buice's experiment. Skin

friction along both walls agrees well with Buice's measurements, see Fig. 5. Near

the diffuser throat the mean flow detaches over a very short distance, indicated by

cy dropping to zero near x/6 = 2 on the deflected wall. There, a very thin zone
of backfow buried in the viscous layer exists that is completely disconnected from

the separation bubble, which begins at x/6 = 13 and extends into the tail-duct.

Using a thermal tuft, Buice determined the location of vanishing wall stress to be

at x/6 = 12. The location of zero crossing in cI is reached at a shallow angle.

Accurate prediction of the exact location of vanishing shear stress is probably less

important than of the overall shape of mean flow profiles and the slope of cy(x).

Most of the pressure increase occurs within the first third of the expansion with
the steepest rise close to x/6 = 2 ( Fig. 5).

Comparison of Reynolds stresses

Measurement errors are higher for fluctuations as compared to the mean flow,

especially at the early stations where measurement volumes are large compared

to the local gradients of rms profiles. Buice's measurements of u t are flawed near
walls, and the peak rms values are underpredicted by 10-20%. Measurements of

v t are available only for regions where the turbulence level remained below 35%.

Therefore, only partial profiles are shown in the rear part. A few profiles from the

LES upstream of the first measurement stations are shown. The scatter among

the two experiments is larger for rms-values and shear stress than for the mean
flow. Still, the agreement of the two datasets is good, as can be seen at stations

x/6 = 27, 34, 38 where data from both experiments are available.

Rms profiles from all three velocity components exhibit a characteristic shape

with a double peak. The location of the peak value moves away from the wall into

the flow interior with increasing distance from the diffuser throat. Locations of

peaks of all three rms-values are close to each other and coincide with the locations
of extremal values of _--6.
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FIGURE 5. Top: Skin friction coefficient c! based on Ub along deflected wall

(_) and flat wall ( .... ) from LES and Buice (o). Bottom: Pressure coefficient

cp based on Ub: LES flat wall ( .... ), LES deflected wall (_), Buice deflected

wall (o) and Obi flat wall (o).

Profiles of u' from the simulation deviate from measurements upstream of x/6 =

25. In this region the peak values of u' on the side of the deflected wall are higher

by 10-20% than in the experiments. A similar overshoot is observed for -_--_ in

the region 10 < x/6 < 25. As mentioned earlier, Buice's measurements for fluctua-

tions have rather large error margins. Inside the outlet section, deviations between

simulation and measurements become more pronounced near the separation bub-

ble. Near the flat wall, the agreement for u', v t, and _ is reasonable. Obi's data

are less reliable in this region since the flow is no longer two-dimensional in the

mean. The vertical velocity fluctuation v t deviates from measurements downstream

of x/6 = 12. There, the part of the if-profile between flat wall and duct centerline

is on average 10-20% higher in the LES than in the experiment. Also, _ seems to

be higher in this profile section.
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Conclusion from the validation

Although mean flow and % agree well with the measurements, the agreement
in Reynolds stresses is not as good. Part of this discrepancy might be due to

measurement errors. However, often the deviation of simulation results is outside

the scatter of both experimental data sets. It seems unlikely that both experiments

suffer from a similar systematic error since different measurement techniques (LDA

versus hotwire) were employed.

We find that the simulation captures many essential features of the flow in this

configuration, making it a valuable source for a detailed study of the physical phe-

nomena associated with the separation process. With respect to the ability of LES

to make accurate quantitative prediction of this flow, some uncertainties remain.

Most importantly, it is not clear to what degree the flow in the experiment might

be influenced by the presence of secondary flow. A thorough validation requires
additional detailed measurements.

Future plans

The simulation on the fine grid is still running, and it will be continued until

the statistic are fully converged. In addition, simulations on coarse grids will be

performed with interpolated inflow field used for the fine mesh, to investigate the
minimal resolution necessary for LES.
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Progress in large-eddy simulation of

trailing-edge turbulence and aeroacoustics

By Meng Wang

1. Motivation and objectives

Turbulent boundary layers near the trailing-edge of a lifting surface are known to

generate intense, broadband noise through an aeroacoustie scattering mechanism

(Ffowcs Williams & Hall 1970; Howe 1978). In addition, the fluctuating surface

pressure (pseudo-sound) tends to excite structural vibrations and low frequency

noise radiation (Blake 1986).

To numerically predict the trailing-edge noise requires that the noise-generating

eddies over a wide range of length scales be adequately represented. This require-

ment cannot be met by the traditional computational fluid dynamics (CFD) meth-

ods based on Reynolds-averaged Navier-Stokes (RANS) equations or Euler equa-

tions. Large-eddy simulation (LES) techniques provide a promising tool for obtain-

ing the unsteady surface-pressure fields and the near-field turbulence quantities.

LES is best suited for computing the noise source at Reynolds numbers of engi-

neering interest because it resolves only the energy-containing eddies, known to be

significant contributors to noise radiation. The effect of small (subgrid) scale ed-

dies on the large (resolved) scale motion is modeled, thus drastically reducing the

computational cost as compared with direct numerical simulation (DNS). The lat-

ter approach, which attempts to resolve all the physical length scales, is limited to

simple, relatively Iow Reynolds number flows even with today's high performance

computing capabilities.

In this project, we aim to develop numerical prediction methods for trailing-

edge aeroacoustics using a combination of LES techniques and aeroacoustic theory

based on Lighthill's analogy (Lighthill 1952). With this approach, the instantaneous

turbulent flow fields near the trailing-edge are obtained by means of LES. The space-

time evolution of the surface pressure fluctuations, useful as forcing function for

structural vibration models, is also computed directly. The simulation results allow

the acoustic source functions, or the fluctuating Reynolds stress, to be evaluated.

The radiated noise can then be computed from an integral-form solution to the

Lighthill equation, along the line of Ffowcs Williams & Hall (1970). A second

objective of the project is to study the physical mechanisms for the generation of

sound and pseudosound. Besides the edge scattering effect, we are also interested in

the roles played by pressure gradients and boundary-layer separation near a trailing

edge.

The general framework and aeroacoustic formulation for the present project are

outlined by Wang (1996). During the past year major effort has been devoted to

the LES of the near-field, in order to evaluate the acoustic source functions and to

assess the predictive capabilities of LES for surface pressure fluctuations.
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FIGURE 1. Flow configuration and computational domain. The experimental

measurement stations B-G are located at x/h = -4.625, -3.125, -2.125, -1.625,

- 1.125, and -0.625, respectively.

2. Accomplishments

2.1 Flow configuration

The flow being simulated corresponds to the experiment conducted by Blake

(1975). As shown in Fig. 1, a two-dimensional flat strut with a circular leading
edge and an asymmetric, beveled trailing-edge of 25-degree tip-angle is placed in a

uniform stream at zero-degree angle of attack. The strut has a chord to thickness

ratio C/h = 21.125. The Reynolds number is based on free-stream velocity U_, and
the chord is 2.15 × 106. This flow is particularly interesting in that the asymmet-

ric edge shape produces a separated flow on the low-pressure side and an attached

boundary layer on the high-pressure side, thus creating complex shear-layer inter-

actions in the vicinity of the trailing edge. The experimental data, including the

mean and turbulent velocity magnitudes and the fluctuating surface pressure, are

available for comparison with computational results.

_.2 Computational methodology

In order to reduce the computational cost while capturing the essential physical

processes of interest, numerical simulations are conducted in computational domains
that contain the aft section of the strut and the near wake, as illustrated in Fig. 1.

Note that only the location of the inlet boundary is depicted exactly; the remaining
three sides of the domain have been truncated for plotting clarity (see Table 1 for

the actual domain sizes). The letters B, C, D, E, F, and G indicate measure-

ment stations in Blake's experiment. They are located at x/h = -4.625, -3.125,

-2.125, - 1.625, - 1.125, and -0.625, respectively, in a Cartesian coordinate system

originating from the trailing edge.

The simulations solve the spatially filtered, unsteady, incompressible Navier-

Stokes equations in conjunction with the dynamic subgrid-scale model (Germano

et al. 1991; Lilly 1992). The numerical code is an adaptation of the C-grid code

described by Choi (1993) and Mittai (1996). Spatial discretization is achieved us-

ing second-order central differences in the streamwise and wall-normal directions
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and using Fourier collocation in the spanwise direction. A significant improvement

has been made by implementing a phase-shift dealiasing strategy in the spanwise

direction (Lund & Wray, private communication). Compared with the original

method of dealiasing by padding, the new method saves 33% CPU time and mem-

ory. The time-advancement is of the fractional step type in combination with the
Crank-Nicolson method for viscous terms and third order Runge-Kutta scheme for

convective terms. The continuity constraint is imposed through a pressure Poisson

equation solved at each Runge-Kutta sub-step using a multi-grid iterative proce-
dure.

The boundary conditions at the inlet are obtained by the following procedure.

First, an auxiliary RANS calculation is conducted in a C-grid domain enclosing the

entire strut. The resulting mean velocities, accounting for the flow acceleration and

circulation associated with a lifting surface, are used as the inflow profiles outside

the boundary layers on both sides of the strut. Within the turbulent boundary

layers the time series of inflow velocities are generated from two separate LES's of

flat-plate boundary layers with zero pressure gradient, using the method described

by Lund, Wu & Squires (1996). The inflow-generation LES employs an identical

mesh resolution as for the trailing-edge flow LES at the inlet and matches the

local boundary layer properties, including the momentum thickness and Reynolds
number, with those from the RANS simulation.

A no-slip condition is applied on the surface of the strut. The top and bottom

boundaries are placed far away (~ 20h for most simulations) from the strut to
minimize the impact of the imposed velocities obtained from RANS calculations.

At the downstream boundary the convective outflow condition (Pauley, Moin &

Reynolds 1988) is applied to allow the vortical disturbances in the wake to leave

the computational domain smoothly.

_.8 Simulation8 performed

A total of four simulations, summarized in Table 1, have been carried out to

date, although only the last two will be described in detail. The first simulation

was done on a very coarse grid in the course of code development and testing. More

reasonable grid resolutions were employed in simulations 2 and 3, which differ only in

the spanwise resolution. The resolution improvement in LES 3 results from a switch

to the phase-shift dealiasing method mentioned previously, without increasing the

computational cost. The two simulations (LES 2 and LES 3), however, showed

insignificant differences in the velocity and mean pressure fields.
The newest simulation, LES 4, differs from LES 3 in two major aspects: the

inflow conditions and the spatial resolution. Fig. 2 compares the inlet streamwise

velocity profiles (normalized by free-stream velocity Uoo) used in LES 3 and LES 4,

obtained from RANS calculations using the uz-f turbulence model (Durbin 1995)

and Menter's (1993) SST k-_ model, respectively. In this figure the strut is lo-

cated at 0 < y/h _< 1, and the two boundary layers are represented by the nearly
horizontal lines. The two turbulence models produced a noticeable difference in

the velocity overshoot (undershoot) outside the upper (lower) boundary layer. The

inflow profiles for LES 4 are associated with a smaller mean circulation, which
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No. Domain

(l_ xl_ xt=)
20.0h x 82h x 0.5h

16.5h x 41h x 0.5h
16.5h x 41h × 0.5h

16.5h × 41h × 0.5h

Grid

(n_ × n_ x nz)
576 x 80 × 32

1280 x 88 x 32

1280 × 88 × 48

1536 x 96 x 48

Inlet Reo

(upper, lower)

3660, 2860

3660,2860

3660,2860

3380,2760

Table 1. Domain size, grid size, and inflow Res for simulations performed.
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FIGURE 2.

calculations.--
Mean streamwise velocity profiles at LES inlets, obtained from RANS

LES 4; .... LES 3.

is thought to promote trailing-edge separation (the corresponding RANS solution

indeed has larger separation). The different inflow profiles also correspond to dif-

ferent Reynolds numbers Ree based on momentum thickness and boundary layer

edge velocity U_, as listed in Table 1.

The strearnwise resolution improvement in LES 4 occurs mainly along the upper
surface, on which 640 grid points are nommiformly distributed, compared with

448 points for LES 3. This reduces the maximum grid spacing in wall units at the

location of skin-friction peak (cf. Fig. 7) from Ax+,,= _ 105 in LES 3 to Az+a_ _ 60.
Along the lower surface 512 and 448 points are used in LES 4 and LES 3, with

Ax+=_ ..m74 and 62, respectively. In both cases, 192 points are distributed along the

wake line (branch cut). The wall-normal resolution is increased slightly, although

the grid spacing for the first layer of cells adjacent to the surface remains unchanged

at Ay+ _ 2. In the spanwise direction, the same number of points with uniform

spacing are used in both simulations. Az+ax is approximately 55 at the skin friction
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FIGURE 3. Velocity fields computed from LES 4. (a) Instantaneous streamwise

velocity u/Uoo at a given spanwise cut (contour levels: -0.236 to 1.274, increment

0.116); (b) mean streamwise velocity U/U_ (contour levels: -0.081 to 1.207, incre-

ment 0.068).

peak and is substantially smaller elsewhere.

The CPU time requirement to advance the simulation one flow-through time, i.e.,

to follow a fluid element to traverse the streamwise domain length, is approximately

150 single-processor hours on CRAY C90 for LES 3, and 200 hours for LES 4. At

least two to three flow-through times are required to eliminate the initial transients

and collect converged statistics.

_.4 Results

Figure 3a depicts contours of the instantaneous streamwise velocity u/Uoo at a

given spanwise location. The mean streamwise velocity (U/Uoo) contours, obtained

by averaging over the homogeneous spanwise direction and time, are plotted in

Fig. 3b. The results of LES 4 are used for both figures. It is observed that the

numerically simulated fields exhibit realistic turbulence structures and a small sep-

arated zone near the trailing edge. The two shear layers, arising from the separated

boundary layer on the upper side and the attached boundary on the lower side,

interact in the near wake region to shed unsteady structures downstream.

In Fig. 4, the magnitude of the mean velocity 0 = (U 2 + V2) 1/2, normalized

by its value at the boundary-layer edge U,, is plotted as a function of vertical

distance from the upper surface at streamwise stations (from left to right) C-G

defined in Fig. 1. The solid and dashed lines are based on LES 4 and LF, S 3,
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FIGURE 4. Profiles of the normalized mean velocity magnitude as a function of

vertical distance from the upper surface, at streamwise stations (from left to right)

C, D, E, F, and G. -- LES 4; .... LES 3; • Blake's experiment. Individual

profiles axe separated by a horizontal offset of 1 with the corresponding zero lines

located at 0, 1, ..., 4.

respectively, and the symbols represent Blake's experimental data. Good agreement

with the experimental results is obtained at station C and all the upstream locations.

However, significant deviations occur at stations D and E, where the experimental

profiles axe less full in the near-wall region. Further downstream, at stations F

and G, the discrepancy diminishes, and the computed profiles, particularly those

from LES 4, compare well again with the experimental results. Between the two

simulations, LES 4, which has a smaller mean circulation and better grid resolution,

provides better agreement with the experiment.

Figure 5 compares the computational and experimental profiles of the "turbulence

intensity", or the normalized rms velocity fluctuations as measured by a single hot-

wire thermal anemometer system, at streamwise stations (from left to right) B, D,

E, F, and G. In terms of the mean and fluctuating velocity components in the x-y

plane, the fluctuating velocity measured by a single wire is approximately

U V
_t _,_ Ul V I.

(v2+v2)½ + us)½ (1)(u s +

_ _ u t in an attached boundary layer where V << U. The agreement between

the LES and the experimental results is fairly good except in the near-wall region

and at the last two stations. One notices that the experimental intensity profiles

consistently miss the near-wall peaks known to exist in turbulent boundary layers,
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FIGURE 5. Profiles of the rms velocity fluctuations defined in (1) as a function of
vertical distance from the upper surface, at streamwise stations (from left to right)

B, D, E, F, and G. _ LES 4; .... LES 3; • Blake's experiment. Individual

profiles are separated by a horizontal offset of 0.15 with the corresponding zero lines

located at 0, 0.15, ..., 0.60.

suggesting a possible lack of spatial resolution or high-frequency response as the

probe approaches the wall. The large discrepancy observed in the separated region

(stations F and G) may be caused by both simulation and measurement errors.

In general, hot-wire readings become increasingly difficult to interpret if the rms

turbulence intensity exceeds 30% of the local mean velocity (Bradshaw 1971). This
is seen to be the case in the separation bubble where the mean velocity is very

small (cf. Fig. 4). It should also be pointed out that the LES results represent the

resolved portion of velocity fluctuations only. No attempt was made to account for

the contributions from the subgrid scale stresses.

The dimensionless mean pressure (= Cp/2) and the local skin-friction coefficient
are depicted in Figs. 6 and 7, respectively, as functions of x. Both simulations

show unsatisfactory comparisons with the experimental Cp data, although LES 4
represents a clear improvement over LES 3. The improvement arises from the

smaller circulation and the larger separation zone near the trailing edge. The latter

can be observed from the C! curves for the upper surface (cf. Fig. 7), where the

solid curve representing LES 4 exhibits a longer portion of negative skin friction.

Comparisons have also been made between the boundary-layer properties pre-

dicted numerically and experimentally. Figures 8 and 9 show the streamwise dis-

tributions of displacement thickness and momentum thickness, respectively. The

experimental values, represented by the solid circles, are given at (from left to right)
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FIGURE 7. Distribution of the local skin friction coefficient near the trailing edge.
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FIGURE 10. Time history of surface pressure fluctuations from LES 4, at stream-

wise stations (from bottom to top) B, C, D, E, F, G, and T.E. (trailing edge), at

a fixed spanwise coordinate. Individual curves are separated by a vertical offset of

0.05 with the corresponding zero lines located at 0.05, 0.10, ..., 0.35.

stations B-G. The displacement thickness predicted by LES is in general agreement

with the experimental data except at station D. The momentum thickness is also

predicted well except at the last two stations. The poor agreement at these stations

is unexpected, given that the numerical and experimental mean profiles agree well

in Fig. 4.

Temporal variations of wall-pressure fluctuations are exemplified in Fig. 10. The

signals are obtained from LES 4 for stations (from bottom to top) B-G and the

trailing edge, at a fixed spanwise location. At stations B-E the pressure signals

consist of predominantly high frequency fluctuations associated with small scale

eddies in the attached turbulent boundary layer. The oscillation amplitude is de-

creased in the favorable pressure gradient region (station C) and increased in the

adverse pressure gradient region (stations D and E). After the boundary layer is

separated (stations F and G), the high frequency content is diminished, and the

surface pressure is characterized by lower-frequency and higher-amplitude oscilla-

tions caused by the unsteady separation. The high-frequency content reappears at

the trailing edge, owing to the contribution from the attached turbulent boundary

layer on the lower side.

Figure 11 depicts the wall-pressure frequency spectra

IV¢(w) = _ < p'(t)p'(t + r) > ei_rdr (2)

calculated from LES 4 for stations C, E and G. The ensemble average < > is
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FIGUI_E 11. Frequency spectra of wall pressure fluctuations compared with Blake's
experimental measurements at selected streamwise stations. The lines are from

LES 4 (_ station C; .... station E; ----- station G), and the symbols are

from Blake's experiment (o station C; • station E; • station G).

replaced by time- and spanwise averages. Outer variables Urn, 6", and the dynamic

pressure q_ = pU2_/2 are used to scale the data for comparison with Blake's ex-

perimental measurements. The calculated spectra agree relatively well with the

experimental data at stations C and E, although they fall off more quickly at
the high frequency end due to limited grid resolution. The high frequency con-

tent corresponds to fine spatial structures not resolved on the simulation grid. In

the separated region (station G), the LES is seen to significantly overpredict the
pressure spectra. The surface pressure frequency-spectra from the coarser grid sim-

ulation LES 3, not shown here, show similar agreement with the experiment in

a somewhat narrower frequency range. It should be mentioned that the pressure

signals plotted here have not completely converged to the statistically stationary

state, as suggested by the slight upward drift of some curves in Fig. 10. As a result,

the pressure spectra, particularly at the low frequency end, will be subject to small
corrections as the simulation continues.

,_.5 Discussion and summary

The preliminary LES results described above are encouraging in terms of quan-

titative predictions of the trailing-edge velocity fields and surface pressure fluctua-

tions. However, significant discrepancies still exist between the computed quantities

and those measured experimentally at certain measurement stations. Factors that

may have contributed to these discrepancies include the inflow velocity conditions,



48 M. Wang

spatial resolution, and computational domain size. In addition, experimental errors

may have also played a role.

The inflow velocity profiles constitute a major uncertainty for the present LES

since they are not available from Blake's experiment. The experimental measure-

ments are limited to the upper-side of the strut, and even there the available data

are insufficient for boundary condition specification. As a result, we had to resort

to RANS calculations to provide the inflow mean velocities, thus severely com-

promising the accuracy of the LES. The inflow profiles are directly related to the

circulation, which affects the entire flow field including the trailing edge region.

Two major simulations, LES 3 and LES 4, with different inflow profiles and

streamwise resolutions were described in this report. The one with smaller mean

circulation and better resolution (LES 4) is shown to generate a larger separated
region and mean velocity profiles in better agreement with the experimental data.

Likewise, the pressure coefficient obtained from LES 4 represents a better approxi-

mation to the experimental data although the pressure rise from the suction peak to

the trailing edge is still exaggerated significantly. Thus, the circulation associated

with the experiment must be smaller than that in either simulation. In principle,

one could estimate the circulation based on the lift or the surface integral of the

static pressure. This is, however, not feasible because no measurement data were

given on the lower surface.
The rms velocity fluctuations from the experiment and both simulations are in

general agreement on the flat strut section and the first two stations on the de-
scending ramp, except in the near-wall region where the experiment fails to record

the peak. The cause for the large disparity at the last two stations needs to be

investigated. Unfortunately, individual components of velocity and Reynolds stress

are not available from the experiment, which impedes a more rigorous validation or

diagnosis of the computational solutions.

The surface pressure frequency spectra reported here axe rather preliminary. We

are in the process of validating their statistical convergence as more simulation data
become available.

3. Future plans

First, the near-field LES needs to be further validated and the discrepancies
with the experimental data reconciled. The effect of inflow conditions and the

mean circulation on the edge-flow behavior will be investigated, and more grid

refinement studies are to be carried out. Other possible artifacts that may affect the

computational solutions such as the computational domain size (particularly in the

spanwise direction) should be examined. A careful evaluation of the experimental
accuracy is also necessary.

Once a reliable near-field solution is established, we will conduct detailed studies

of the structure of wall pressure fluctuations and scattering by the edge. Cross-
correlation and spectral analyses will be conducted to investigate the unsteady sur-

face pressure generation and scattering mechanisms. The radiated far-field noise will

be calculated following the acoustic analogy formulation with a hard-wall Green's

function, as outlined in Wang (1996).
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Resolution requirements in

large-eddy simulations of shear flows

By J. S. Baggett, J. Jim_nez 1 AND A. G. Kravehenko

1. Motivation

Large eddy simulations reproduce faithfully the characteristics of moderately

complex turbulent flows (Moin & Jim_nez 1993, Moin 1997). This is true even if

most of them are, at present, based on variations of the Smagorinsky model, which

is known to represent only poorly the subgrid Reynolds stresses (Clark, Ferziger &

Reynolds 1979, Bardina, Ferziger & Reynolds 1983). The subgrid stress tensor can

be decomposed in isotropic and anisotropic components. The former affects the flow

by determining the rate of energy dissipation, but it does not enter directly in the
equations for the mean flow. The average value of the latter determines the mean

shear stresses and controls directly the mean velocity profiles. In the absence of a

mean shear, the rate of energy dissipation fully characterizes isotropic turbulence

(Kolmogorov 1941), and it is believed that the dynamic versions of the Smagorinsky

model (Germano et al. 1991) work by approximating it correctly (JimSnez 1995). It
is, on the other hand, clear that a model which does not well represent the stresses

must do a poor job on shear flows unless the resolution of the filter is chosen fine

enough that the subgrid stresses are negligible.

While it has long been recognized that adequate resolution is crucial for successful

large-eddy simulations, there are few systematic studies that delineate the actual

requirements. That is the subject of this note. The issue may actually be of

secondary importance in free shear flows, although a clear criterion should also

be useful there because it will be shown below that the number of 'anisotropic'
degrees of freedom in those flows is independent of the Reynolds number. Large-

eddy simulations only have to compute explicitly those anisotropic modes since,

as discussed in the previous paragraph, the isotropic ones are handled well by the

present models. It follows that large-eddy simulations of free shear flows need

only resolve a fixed number of degrees of freedom, depending on the geometry

but independent of Reynolds number, and that an overestimation of the resolution

requirements would at most result in a fixed penalty factor in computer time.
The situation is different for wall-bounded flows, in which the decrease of the

integral scales in the neighborhood of the wall results in a number of anisotropic

modes which increases with Reynolds number. The resolution requirements for

LES depend, as a consequence, also on the Reynolds number and, although not

as large as those of direct simulations, are at present the main limitation for the

simulation of those flows (Chapman 1979). It is therefore important in those cases
to understand the exact requirements and their causes.

1 Also with the School of Aeronautics, U. Polit_cnica Madrid.
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The present note is organized as follows. In §2 we review the experimental evi-

dence on the anisotropy of the small scales and, in particular, on the dependence of
the subgrid off-diagonal stresses with the size of the filter. This section also includes

information on the equivalent width to be used for this purpose in anisotropic fil-

ters. The predicted stresses are compared in §3 to those obtained by a standard
dynamic Smagorinsky model, and a criterion is established for the resolution needed

to achieve a given error in the mean flow. The number of computational modes re-

quired for large-eddy simulations is estimated from these arguments in §4, and
guidelines are offered for further work.

2. The anisotropy of the subgrid stresses

_.1 Spectral information

Although it is generally accepted that the small scales of turbulent flows are

isotropic, quantitative measurements are rare (see Saddoughi & Veeravalli, 1994,

for a recent experiment and for a review of older results). From the point of view

of LES, what is needed is a characterization of the isotropy of the subgrid Reynolds

stress tensor. Consider the spectral energy tensor @ij, which is a function of the

wavenumber vector k. If it is normalized so that f dk = u_uj, the truncated
integral

P

rij(k) = ] _ii dk, (2.1)
JIk [>k

represents the subgrid stress tensor corresponding to a sharp filter with cut-off k.

For each k it is then possible to define a stress anisotropy tensor,

A_j = rO 1 _.- 5 'j' (2.2)
Tkk

where repeated indices imply summation, and its L2 norm, normalized as

a = (A 0 A 0/3) 1/2, (2.3)

measures the anisotropy of the subgrid stresses. It is proportional to the root

mean square deviation of the principal stresses with respect to their mean value,

normalized with the subgrid energy. It reaches a maximum value of a _ 0.47 for a

completely uni-axial stress and is zero for an isotropic tensor.

In practice this quantity is seldom available, and the one-dimensional spectral

tensor Oij(kl ), obtained by integrating &ij over the two remaining wavenumber

components, is used as a surrogate. The subgrid stresses are then estimated by

OO
rij(k) = Oij dkl, (2.4)

which corresponds to applying a one-dimensional sharp filter with cut-off kl = k

along the streamwise direction.
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FIGURE 1. Root-mean square subgrid stress anisotropy as a function of the cut-
off wavenumber for sharp Fourier filtering. Non-equilibrium boundary layer in an

adverse pressure gradient (Maru§i_ & Perry 1995): Re,. = 1253, (g*/r_)dP/dx =

7.16. -- , y/6 = 0.049; .... , 0.069; ----- , 0.095; ........ , 0.168; ..... ,

0.328; ---, 0.630. Circular jet from (Bradshaw, Ferris & Johnson 1964): ----o---.

UR/t, = 1.7 x 105, x/R = 4, y/R = 1.

The issues involved in this substitution are discussed by Batchelor (1953) for the
particular case of isotropic turbulence where, within the inertial range, isotropy

implies that 022 = 033 4= gOll. In a more general case the substitution cannot
be completely compensated. In the experiments discussed below, it has been taken

approximately into account by premultiplying Oll by 4/3. Even so, the anisotropy

becomes uncertain as it approaches the value a _ 0.04, which corresponds to a

tensor whose principal stresses are in the ratio (1, 4/3, 4/3).

Two experimental flows are analyzed in this way in Fig. 1: a non-equilibrium

boundary layer in a strong adverse pressure gradient (Maru_id g: Perry 1995), and

a circular jet (Bradshaw, Ferris & Johnson 1964). Several wall distances are used

in the boundary layer and, in all cases, the streamwise wavenumber is normalized
with the integral dissipation length L_ --- q3/e, where q_ = uiu--'-'7,and e is the energy

dissipation rate. The integral dissipation length is always of the same order as the

integral scales of the flow and is generally much easier to compute. It can be seen

that, although the large scales are fairly different in both flows, they become essen-

tially isotropic for kL_ > 50, corresponding to a filter of width Ax = 2¢r/k _ LJIO.

The exception is the station of the boundary layer very close to the wall, y+ _ 60,

which either does not reach isotropy or does it very slowly. The microscale Reynolds
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number is comparable in both cases, Rex .._ 150 - 200, even in the neighborhood

of the wall. The differences observed in the behavior of the near-wall spectrum axe
probably not due to low Reynolds number effects.

Perhaps more relevant to LES is the total, rather than relative, stress anisotropy.

Figure 2(a) contains subgrid spectra of the total anisotropic stress, rA = a2rii(k),

while Fig. 2(b) displays spectra of the r12(k), which is the only off-diagonai stress
which does not vanish identically in these experiments. All the spectra have been

normalized to unity at k = 0 and give the fraction of the stresses that would have
to be represented by a subgrid model.

The classical scale similarity theory for the cospectrum predicts ¢I'12 ". k -7/3

(Lumley 1967 ), which would translate into r12 "" k -4Is for the accumulated subgrid

cospectrum. A line with this slope has been included in both Fig. 2(a) and (b),
but it fits the data only approximately. As in the analysis of the previous figure,

it follows from this one that kL, _ 100 marks the 'engineering' limit of anisotropic

turbulence. The anisotropic subgrid stresses beyond that limit are less than 1% of

the total, and even gross errors in their prediction would have a slight effect on the
mean flow.

_._ Triazial filters

The analysis in the previous section was restricted to one-dimensional filters by

the experimental information at hand. A full study of the subgrid stresses under
generic triaxial filtering requires knowledge of the full spectral tensor or, equiva-
lently, of the full three-dimensional autocorrelation tensor of the velocities. Both

tensors are related by a Fourier transform. The correlation tensor Rij(x, x') =
(ui(x), u/(x')), where () stands for averaging, is a function of the two points x and

x' and only becomes a function of the relative displacement x - x t along the ho-

mogeneous directions of the flow. In the general case it is a six-dimensional object

that is seldom compiled in experiments or computations.
If a filter is defined as a convolution

= fg(x, (2.5)

the exact filtered second-order statistics can be obtained from the correlation tensor

by a double filtering operation (Jim$nez & Moser 1997),

R-_-_(x, x')= / f R,,v(_, _')g(x, _)g(x', _')d_ d_'. (2.6)

For x = x', we recover the filtered one-point second order statistics R_v(x, x) =
(_V), and the subgrid stresses can be obtained by subtracting the filtered from the

unfiltered values, ru_ = R._ - R_v. Besides being applicable to inhomogeneous

flows, this procedure has the advantage of requiring only the small-separation cor-

relation tensors (over separation distances less than or equal to the longest desired

filter length), thus relaxing somewhat the storage and computational requirements

of dealing with such high-dimensional objects.
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FIGURE 2. Subgrid stress spectra for the experiments in Fig. 1. (a) Total

anisotropic stress. (b) Off-diagonal component, r12. Symbols as in Fig. 1. The
two dotted straight lines have spectral slope k -4/3, as suggested by the inertial
theory for the cospectrum.
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A compilation of data intended for the validation of LES has recently become
available (AGARD 1998), and contains correlation data for several flows. The

boundary layer spectra used in the previous section also belong to this collection.
Here we use data from a Re,. = 590 channel computed by Mansour, Moser & Kim

(1997) to obtain scaling information for the subgrid stresses under anisotropic filters.
The data are compiled at seven locations in the channel, y+ = 60 - 500, and two
types of filters are used: a simple box filter

!

g = (_1_2_3) -1 , for [xi - x,] < _il2, i = 1... 3, (2.7)

which vanishes for [xi- x_[ > ifi/2, and a Gaussian one adjusted so that its variance

is the same as that of the box filter in each direction. Each of the 6i are varied

independently in the range from zero (actually the computational grid spacing of
a few wall units) to 6i ,_ 0.14H, where H is the half-width of the channel. This

generates approximately 700 filter combinations at each location, and the fractional

subgrid stresses rij/(uiuj) are compiled in each case.

The equivalent width to be used for anisotropic filters was first considered by

Deardorff (1970) and has been discussed since then by Schuman (1975), Lilly (1988),
and Scotti, Meneveau & Fatica (1996). A popular choice is A = (616263 )1/3 , which

was first proposed by Deardorff and which can be approximately justified by consid-
ering the integrated dissipation in a Kolmogorov spectrum outside the wavenumber

ellipsoid that represents the filter. That scale is, however, not necessarily relevant

for the prediction of the subgrid stresses since their spectral tensor is very different
from that of the dissipation, and the dominant contributions to the former are due

to the anisotropic large scales rather than to the isotropic ones which dominate the

latter. In fact, the subgrid stresses from the different filters collapse very poorly

when plotted against isotropic combinations of the widths, as seen in Figs. 3A(a)-

3B(a). Note that, although we have used in those figures a quadratic combination,
the performance of the Deardorff criterion is actually poorer.

It turns out that the optimum collapse of each subgrid stress is obtained for a

different combination of 8's. By adjusting the coefficients of the squares to obtain

a minimum scatter we find, for example, that the best equivalent width for vii is
(Fig. 3A(b))

All = (_12 -_-2(_ 2 _- 2{_2) 1/2. (2.8)

This is easily understood by assuming that turbulence is approximately isotropic,

even in this shear flow. For small separations we can approximate the correlation
function by

R,,l(u,ui) = 1- _ 2A--_1,--_ "_" "''' (2.9)

and it follows from isotropy that the longitudinal and transverse Taylor microscales

are related by (Batchelor 1953)

)i 2,,,, = = (2.10)
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If we remember that the filtered stresses are essentially the integral of (2.9) within

a box defined by the filter, it is reasonable to expect that the relevant scale combi-

nation should weigh the different widths with the curvatures of the function along

each axis. This, together with (2.10), leads to (2.8). Applying the same argument

to R22 and R33 suggests that the right combinations for r22 and rss should be

A22 = (2_12-4-_22-4-2_22)112, (2.11)

(2.12)

Although they are not shown in the figure, these predictions turn out to be correct.
The isotropic theory does not give information on the scaling of the off-diagonal

stresses, which vanish identically in that case. The empirical optimum combination

for the present channel is very close to (Fig. 3B(b))

A,2 = (/i_+ 6_ + 4gs2)'/2, (2.13)

which is simple enough to suggest that a theoretical explanation should exist, prob-

ably as a perturbation of the isotropic theory including weak shear. Also in this

case it is easy to check that the scaling factors correspond to the curvatures of the

correlation function in the neighborhood of the origin. It is clear, on the other hand,

that these scalings can only be approximations, valid for a particular range of filter

scales which are comparable to the Taylor microscale. Much wider filters act on

regions of the correlation functions which are not well described by the parabolic

approximation (2.9), and they should not scale well with the Taylor microscales.

Also, other flows are intrinsically anisotropic, and the isotropic approximation that

holds here would not apply to them. Some preliminary tests on homogeneous shear

flows (Rogers &: Moin 1987, Sarkar 1995) suggest that, although simple quadratic
combinations also work well for them, they are different from the ones above. Note

that the results of the Gaussian filters have been included in Fig. 3B(b), and that

they approximately agree with those of the box filters.

The use of the integral dissipation length to scale the equivalent filters works well

here as it did for the spectra in the previous section. In Fig. 4 we have compiled

data from several locations in the channel, among which the integral dissipation

length varies by up to a factor of two and the collapse of r12 is maintained.

3. Simulations

To compare the subgrid stresses predicted above with those actually provided
by standard LES models, we undertook a set of simulations of a plane channel

at Re,. ,._ 1,000. They use a multiblock code which allows a high resolution to

be maintained near the walls while varying the grid in the center of the channel.

This avoids the issues of the representation of the flow near the wall, which are

known to be important, while permitting a systematic survey of the effect of the

resolution in the central part of the flow. The code itself and its performance across

block boundaries are described by Kravchenko, Moin &_ Moser (1996). It uses a



60 J.S. Baggett, J. Jim_nez _¢ A. G. Kravchenko

double Fourier expansion in the periodic streamwise and spanwise directions, and

second-order splines normal to the wall. Three computations are analyzed here, all
of them using a box of size 2_" × 2 x _r/2. The spanwise dimension is narrow for an

accurate representation of the central core region, but it should be wide enough for

the logarithmic range below y+ _. 500. The three simulations are comparable to

each other except for the resolution. They all use standard dynamic Smagorinsky
subgrid modeling with the proportionality constant averaged over planes parallel to
the walls.

The first simulation uses a single-block grid 48 × 64 x 48 in the streamwise,

normal, and spanwise dimensions. It was checked against a previous simulation

on a somewhat larger box (27r × 2 x 7r) at higher resolution, 96 × 100 × 96, and
it is considered to be approximately correct. The two other simulations use the

same grid near the walls (48 × 21 × 48), but the horizontal resolution is decreased

in a central block, which contains 22 points for the region above y+ _. 250. The
horizontal grids in this region are 24 x 24, and 16 x 16. The horizontal resolution

of the finer grid is Ax + × Az + _ 130 x 30 and becomes respectively two and three
times coarser for the other two grids. The wall-normal resolution is identical in all

cases and varies from Ay+ _ 0.5 near the wall to Ay+ _ 100 at the center of the
channel.

In each case the fraction of the mean subgrid shear stress r12 due to the model

was recorded as a function of y. It is given in Fig. 4 in terms of a reduced 'filter' size

computed from the local grid spacing using (2.13) and normalized with the local

integral dissipation length. Only points in the central block and at least two grid
points away from the zonal boundaries are used. Included for comparison are the

subgrid fractions of the same quantity obtained in the previous section (Fig. 3d) by
explicit filtering of the direct channel simulation.

It is remarkable that both sets of data collapse reasonably well within themselves,

taking into account that they represent filters of widely varying aspect ratios at
locations in the channel that span from the inner logarithmic region to the central

core. They do not, however, agree with each other. The measured subgrid stresses
are consistently below those predicted by explicit filtering, by a factor of about 3-4.

Note that the two sets are not strictly comparable since the filtering results are
plotted against a known filter width, while the filter width in the simulation is

assumed proportional to the grid size with the grid acting as an unknown implicit

filter. They should therefore not be expected to agree exactly with each other,

but the disagreement is in the wrong direction. Even if the effect of the grid is
not well understood, it is clear that it cannot represent features smaller than the

grid spacing. This implies that the stresses in the subgrid eddies should correspond

to filters at least as wide as the grid, and probably wider, while the only way to

collapse the two sets of data in the figure would be to assume that the grid is acting
as a filter three times narrower than itself. The only possible conclusion is that the

subgrid model is providing at most about 20-30% of the shear stress that it should,

in rough agreement with the results obtained by Bardina et al. (1983) from a-priori
testing of the Smagorinsky model.



Re_olution requirement_ in LES 61

10

A

10 -2

..... t " '

;... W
÷

| I I t t t, I t I t I

10-z 10

FIGURE 4. Fraction of the subgrid shear stress carried by the dynamic Smagorinsky
model, compared with what should be carried at a comparable filtering size. LES

simulations of channel at Re,. ,_ 1000, y+ > 300. Resolution in central block: o ,

16 × 16; Lx , 24 × 24; v : 48 × 48. Resolution near the wall is always 48 × 48.

+ , subgrid r12 obtained by explicit box filtering on a channel at Re,. = 590, as in

Fig. 3. y+ > 90.

It follows that, if the shear stress is underrepresented by the model, the velocity

profile should adjust itself until the total stress is that of an equilibrium channel,

which varies linearly between the two walls. The errors in the mean velocity profile

should then become worse as the resolution is made coarser, making the model

responsible for a larger fraction of the total stresses. This can be seen to be true

in Fig. 5, which shows the K_rmhn constant computed from each simulation. It

agrees reasonably well with the accepted experimental value _ _, 0.4, in the finer

grid, where the subgrid stress should be in the range of 5-8% (Fig. 4). Even if in
this case the modeled stresses are only about 1%, the total error is 5%, and the

effect on the mean flow is slight. In the coarser simulation, it follows from the figure

that the subgrid stresses should be of the order of 20%, while those provided by the

model are only about 5%. The resulting 15% error translates into an error of the

same order of magnitude in the Khrmhn constant and in the mean profile.

4. Discussion and conclusions

4.1 Degrees of freedom

The analysis in the previous sections suggests that accurate subgrid models for
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the Reynolds stresses, which are large-scale properties of the flow, may not be

strictly necessary in all practical LES. They can be avoided by refining the LES

filter until the fraction of the stresses to be modeled becomes negligible, and this

happens at a fixed fraction of the integral dissipation length, Ax _ LJ10. Besides

the evidence from the experiments analyzed above, this is a consequence of the
form of the spectra of the subgrid stresses, which decay approximately as k -2/3

for the isotropic components and as k -4/3 for the anisotropic ones. The integral

scale is defined by the peak of the energy spectrum, and the decay of the stresses is

therefore measured with respect to it. In the cases in which turbulence is driven by

large-scale shear, the energy-containing eddies are controlled by the geometry, and
the previous argument shows that modeling the stresses correctly requires filters

which are a fixed fraction of the geometric scale. This implies that, for situations

in which L, is approximately uniform, as in free shear flows, only a few thousand

degrees of freedom need to be computed explicitly, independently of the Reynolds

number. All the stresses are contained essentially in them.

Note that the last part of this argument may not be valid if the turbulent forcing

is due to factors other than the geometry, in which case the integral scales can be

smaller than the geometric ones and may depend on the Reynolds number. Such
may be the case, for example, in two phase flows and in turbulent natural convection.

The situation is different for the rate of energy dissipation, which is associated
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with eddies of the order of the Kolmogorov scale r/,-_ L,Re -_/4 and which has to be

estimated correctly to avoid the accumulation of energy in the small scales (Jim6nez

1993, 1995). In the absence of good subgrid models for the dissipation, this would

require the computation of all the eddies down to the level of r/and would lead to

the well known estimate of the number of degrees of freedom in direct simulations,
NT _ Re 9/4. What the previous analysis suggests is that modeling the dissipation

and the stresses are different tasks, with different requirements, and could possibly

be handled by different models. It also shows that, while modeling the former is

an absolute requirement for practical simulations, modeling the latter may not be
crucial.

The previous arguments do not apply in the neighborhood of a wall. While the

data discussed above shows that the anisotropic modes are confined to eddies larger

than a given fraction of the integral scales even in the logarithmic wall layer, the

integral scales decrease as we approach the wall. Consider a fluid volume whose

size L_30 is determined by the geometric scales, such as the channel half-width. In

the neighborhood of the wall the integral length decreases linearly as Lt ,-, y, and
the eddies remain anisotropic above Ax ,-, y. The number of anisotropic modes in

a slab of thickness dy is then dN ,,, L_o dy/Ax _, and their total number is given

by the integral

Nr L2 ° dy/ya 2 2._ .._ L,o/Yo, (4.1)
0

where y0 is some inner wall distance that determines the number of modes. If, in

the absence of a good model for anisotropic turbulence, we choose this limit as a

fixed number of viscous wall units, y0 = vy+/ur, the number of anisotropic modes
becomes

NT "" (u_L_o/V) 2 = Re_, (4.2)

which is only slightly lower than the estimation for direct numerical simulation and

which increases without limit with the Reynolds number. Note that this estimation

is not linked to a particular numerical model, being just a count of the number of

'non-Kolmogorov' modes per unit volume of wall turbulence. These modes depend
on more parameters than the rate of energy dissipation, and they are unlikely to be

modeled correctly by isotropic approximations of the Smagorinsky type.

Note also that improving the subgrid models so that they represent a higher

fraction of the stresses, so that the filter can be chosen as a higher fraction of

the integral scale, would only modify the numerical coefficient in (4.2), but not its

Reynolds number dependence. The only alternatives to decrease substantially the

explicitly computed number of modes would be to improve the subgrid models to

represent correctly all the Reynolds stresses, even above the integral scale, or to

stop the computation at some distance y0 from the wall, expressed in outer, rather
than wall, units.

4._ Conclusions and future work

We have shown that the anisotropic subgrid stresses are confined in practice to

eddies larger than about one tenth of the local integral dissipation scale, and we have
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given criteria to compute the equivalent width, for this purpose, of triaxial filters

in weakly sheared, quasi-equilibrium, flows. We have also shown that Smagorinsky-

type dynamic subgrid models, while representing the energy dissipation correctly,
are not able to reproduce the stresses. They only work if the filter widths are chosen
so that the subgrid stresses to be modeled are a negligible fraction of the total. The

errors due to the model then become unimportant.

For free shear flows this results in a number of degrees of freedom that have to be

computed explicitly, which is independent of the Reynolds number, of the order of a

few thousands. This would make LES a practical alternative in many applications.

For wall bounded flows the same criterion results in a number of anisotropic,
'non-Kolmogorov', modes which scales like Re_, most of which are concentrated

near the wall. To avoid this Reynolds number dependence, the two alternatives are

either to develop better models which are able to describe correctly the full shear
stresses, or to find wall representations which can be applied at distances which do
not scale in wall units.

Some preliminary tests of mixed Bardina-type models (Vreman, Geurts 8z Kuerten
1994) disappointingly gave worse results than the Dynamic Smagorinsky model at
comparable resolutions, but more work is needed before that line is abandoned.

The conclusions of the present work also need to be extended to more general non-
equilibrium flows.
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A general theory of discrete filtering

for LES in complex geometry

By Oleg V. Vasilyev AND Thomas S. Lund

1. Motivation and objectives

In large eddy simulation (LES) of turbulent flows, the dynamics of the large scale

structures are computed while the effect of the small scale turbulence is modeled

using a subgrid scale model. Tile differential equations describing the space-time

evolution of the large scale structures are obtained from the Navier-Stokes equations

by applying a low-pass filter. In order for the resulting LES equations to have

the same structure as the Navier-Stokes equations, the differentiation and filtering

operations must commute. In inhomogeneous turbulent flows, the minimum size of

eddies that need to be resolved is different in different regions of the flow. Thus

the filtering operation should be performed with a variable filter width. In general,

filtering and differentiation do not commute when the filter width is non-uniform

in space.

The problem of non-comnmtation of differentiation and filtering with non-uniform

filter widths was studied by Ghosal and Moin (1995), who proposed a new class of
filters for which the commutation error could be obtained in closed form. The

application of this filter to the Navier-Stokes equations introduces additional terms

(due to commutation error) which are of second order in the filter width. Ghosal and

Moin suggested that the leading correction term be retained if high order numerical

schemes are used to discretize the LES equations. This procedure involves additional

numerical complexities which can be avoided by using the filters described in this

report. Van der Ven (1995) constructed a family of filters which commute with

differentiation up to any given order in the filter width; however, this approach is

limited to a specific choice of filters and does not address the issue of additional

boundary terms that would arise in finite domains.

Due to the lack of a straightforward and robust filtering procedure for inhomo-

geneous flows, most large eddy simulations performed to date have not made use of

explicit filters. The nearly universal approach for LES in complex geometries is to

argue that the finite support of the computational mesh together with the low-pass

characteristics of the discrete differencing operators effectively act as a filter. This

procedure will be referred to as implicit filtering since an explicit filtering operation

never appears in the solution procedure. Although the technique of implicit filter-

ing has been used extensively in the past, there are several compelling reasons to

adopt a more systematic approach. Foremost of these is the issue of consistency.

While it is true that discrete derivative operators have a low-pass filtering effect,

the associated filter acts only in the one spatial direction in which the derivative i_

taken. This fact implies that each term in the Navier-Stokes equations is acted on

by a distinct one-dimensional filter, and thus there is no way to derive the discrete
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equations through the application of a single three-dimensional filter. Considering
this ambiguity in the definition of the filter, it is nearly impossible to make detailed

comparisons of LES results with filtered experimental data. In the same vein it

is not possible to calculate the Leonard term (Leonard, 1974) that appears as a
computable portion in the decomposition of the subgrid-scale stress.

The second significant limitation of the implicit filtering approach is the inability
to control numerical error. Without an explicit filter, there is no direct control in

the energy in the high frequency portion of the spectrum. Significant energy in this

portion of the spectrum coupled with the non-linearities in the Navier-Stokes equa-
tions can produce significant aliasing error. Furthermore, all discrete derivative

operators become rather inaccurate for high frequency solution components, and
this error interferes with the dynamics of the small scale eddies. This error can be

particularly harmful (Lund and Kaltenbach, 1995) when the dynamic model (Ger-
mano et al., 1991; Ghosal et al., 1995) is used since it relies entirely on information
contained in the smallest resolved scales. In addition, it is difficult to define the

test to primary filter ratio which is needed as an input to the dynamic procedure.

The difficulties associated with the implicit filtering approach can be alleviated

by performing an explicit filtering operation as a part of the solution process. By

damping the energy in the high frequency portion of the spectrum, it is possible
to reduce or eliminate the various sources of numerical error that dominate this

frequency range. Explicit filtering reduces the effective resolution of the simulation

but allows the filter size to be chosen independently of the mesh spacing. Further-
more, the various sources of numerical error that would otherwise enter the stresses

sampled in the dynamic model can be controlled, which can ultimately result in

more accurate estimate for the subgrid scale model coefficient. Finally, the shape

of the filter is known exactly, which facilitates comparison with experimental data
and the ability to compute the Leonard term.

To realize the benefits of an explicit filter, it is necessary to develop robust and
straightforward discrete filtering operators that commute with numerical differen-

tiation. As mentioned above, the earlier works in this area required either adding
corrective terms to the filtered Navier-Stokes equations or required the use of a re-

stricted class of filters that could not account properly for non-periodic boundaries.

The objective of this work is to develop a general theory of discrete filtering in

arbitrary complex geometry and to supply a set of rules for constructing discrete
filters that commute with differentiation to the desired order.

This report summarizes the essential results; the details of mathematical deriva-

tions and proofs are described by Vasilyev et al. (1997), hereafter denoted by VLM.

2. Accomplishments

2.1 Commutation error o/filtering and differentiation operations

Consider a one-dimensional field _b(x) defined in a finite or infinite domain [a, b].

Let f(x) be a monotonic differentiable function which defines the mapping from
the domain [a, b] into the domain [a,/_], i.e. _ = f(x). f(x) can be associated with
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mapping of the non-uniform computational grid in the domain [a, b] to a uniform

grid of spacing A, where the non-uniform grid spacing is given by h(x) = A/f'(x).

Let x = F(() be the inverse mapping (F(f(x)) = x). The filtering operation is

defined in an analogous way as in (Ghosal and Moin, 1995). Given an arbitrary

function ¢(x), we obtain the new function ¢(_) = ¢(F(_)) defined on the interval

[a,/3]. The function ¢(_) is then filtered using the following definition:

¢(_) = _ G ,_ ¢(r/)d_7, (1)

where G is a filter function, which can have different shapes in various regions of the

domain. This definition is more general then the one commonly used in the LES

literature and, as will be shown later, is crucial for elimination of boundary terms

in the commutation error. The introduction of filters of different shapes in different

parts of the domain is necessitated by considering inhomogeneous (non-periodic)

fields. If we assume that the function ¢(_) is homogeneous (periodic) in In, 13], then

a periodic filter can have the same shape throughout the domain.

The filtering operation in physical space can be written as

¢(x) = a ,f(x) ¢(u)f (z)

Note that definitions (1) and (2) are equivalent. However, the filtering operation

(1) in the mapped space is much easier to analyze and implement than (2), and we

will use it throughout unless stated otherwise.

Let us consider first the commutation error of filtering and derivative operations

in one spatial dimension. We define an operator that measures commutation error

by

-_x - -_x dx " (3)

Introducing the change of variables q = _ - A_, Eq. (1) can be rewritten as

J5-¢(_) = G (_, _) ¢(_ -- A_)d_. (4)

_x

Performing the formal Taylor series expansion of ¢(_ - A_) in powers of A and

changing the order of summation and integration, we obtain

+oo

-¢(_) = E (-1)kk! AkMk(_)D_¢({)' (5)
k=0

d _

where D_ _-- _ is the derivative operator and Mk(_) is the k-th filter moment
defined by

Mk(_) = ]_.p_ _kG(_,_)d_. (6)
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The series (5) may have either infinite or finite radius of convergence depending
on the filter moments. For the discrete filters, as shown in VLM, the radius of
convergence of the series is infinity.

Substituting (5) into (3) and skipping the algebra we obtain

] +_ _ dMk kde = _ akMk(_)A k + _ Bk---_-(_)A ,
k=l k=0

(7)

where Ak (k > 1) and Bk (k > 0) are, in general, nonzero coefficients. Thus,

the commutation error is determined by the filter moments, Mk((), and mapping
function, F(_).

In this report we consider a general class of filters which satisfy the following
properties:

M°(_) = 1 for _ e [a, 8]; (Sa)

Mk(_) = 0 for k = 1,... ,n - 1 and _ e [a, fl]; (Sb)

Mk(_) exist for k _> n. (8c)

There are many examples of filters which satisfy these properties when the function

¢(_) is defined in the domain (-oo, +oo). One is the exponentially decaying filter
defined in (Van der Ven, 1995). Another example is the correlation function of

the Daubechies scaling function used in multi-resolution analysis for constructing
orthonormal wavelet bases (Beylkin, 1995; Beylkin and Saito, 1993). Examples of

such filters with 5, 9, and 17 vanishing moments and the corresponding Fourier
transforms, G(k) +0¢= f-oo G(_)exp(-zk_)d_, are shown in Fig. 1.

We also note that the definition (8) does not require that the filter kernel be

symmetric. This allows us to use a wider class of filters than in (Ghosal and Moin,

1995; Van der Ven, 1995). We do not present continuous filters on an interval, which

satisfy definitions (8a-8c), since as it will be shown later, for practical purposes we
need discrete filters. For now we only assume that such filters exist and that they
can be constructed.

Using properties (8a) and (8b) it follows that

cOMk

0_ -(_)=0 for k=0,...,n-1. (9)

Consequently, the commutation error (7) is

= O(An). (10)

It is easy to show that in the homogeneous (periodic) case, when the shape of the

filter does not depend on the location, and the mapping from the physical to the
computational domain is linear, Ak is exactly zero for any k and the filter moments
are not functions of the location. This results in zero commutation error.
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FIGURE 1. Filters G(_), (a), with 5 (_), 9 l.... ), and 17 (--.--) vanishing
moments and corresponding Fourier transforms G(k), (b).

The non-uniform filtering operation in one spatial dimension can be extended

easily to three spatial dimensions (see VLM). As in the one-dimensional case this
transformation can be associated with the mapping of spatially non-uniform com-

putational grid to a uniform grid with spacings A1, A2, A3 in the corresponding

directions. If one performs the same type of analysis as in one-dimensional case, it

is easy to show (see VLM) that the commutation error in three spatial dimensions
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is given by

Thus, the commutation error of differentiation and filtering operation is no more

than the error introduced by an n-th order finite difference scheme, provided that
the filter has n - 1 zero moments.

_.2 Discrete filtering in complex geometry

In large eddy simulation of turbulent flows, the solution is available only on a set

of discrete grid points, and thus discrete filters are required in various operations.

The machinery developed in Section 2.1 can be adapted to discrete filtering. In this

section we will limit ourselves to consideration of discrete one-dimensional filtering,
since three dimensional filtering can be considered as an application of a sequence

of three one-dimensional filters. Also, since the filtering operation is performed in

the mapped space, we will consider only the ease of uniformly sampled data.

2._.1 Construction of discrete filters

Let us consider a one-dimensional field 4(_) defined in the domain [a, _]. {4j}

corresponds to values of ¢(_j) at locations _ = a + Aj (j = 0,..., N), where A is

the sampling interval. A one-dimensional filter is defined by

= (12)
I=-K_

where 6(() is the Dirac 6-function and w_ are weight factors. We consider the general

class of non-symmetric filters for which Kj _ Lj. One of the important aspects of
discrete filters is that all filter moments exist and the radii of convergence of Taylor

series (5) and other related series are infinite. Substitution of (12) into (1) gives the

following definition for a discrete filter

Lj

(13)

Z w/= 1, (t4a)

Z l'nw_=0' m=l,...n-1. (14b)

l= - K i

I=-I_

It is the property (12) which allows us to apply results of Section 2.1 to discrete
filters.

In light of the filter definition (8), the weight factors should satisfy the following

properties

L_
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Equations (14) give us n constraints on w_ and are solvable if and only if Lj +

K i + 1 > n. If L i + I<j + 1 > n then additional constraints can be applied.

Conditions (14) give the minimum number of degrees of freedoms for a discrete
filter in order for the derivative and filtering operations to commute to order n.

This condition gives the minimum filter support, which can be increased by adding
additional constraints. The additional linear or nonlinear constraints can be altered

depending on the desired shape of the Fourier transform G(k) associated with the

filter (12) given by
Li

wJ, (15)
t=-Ki

Ease

1

2

3

4

5

6

7

8

9

10

Inumber of
,vanishing w-3 w-2 w-1 wo Wl w2 wa w4 w_
moments

1
4

1 1
2 4

7 3 3 1
g _ s s
5 3 1
8 8 8

15 1 3 1 1
16 4 8 4 16

1 3 3 1 1
16 4 8 4 16

1 1 5 1 1
16 4 8 4 16

31 5 5 5 5
32 32 16 16 32 32

1 27 5 5 5 1
32 32 16 18 32 32

1 5 11 5 5 1
32 32 16 16 32 32

1 3 15 11 15 3 1
64 32 64 16 64 32 64

TABLE 1. The values of the weight factors and the number of vanishing moments

for different minimally constrained discrete filters.

off frequency, i.e.

is given by

A desirable constraint on a filter is that its Fourier transform be zero at the cut-

(_(r/A) = 0. The mathematical equivalent of this requirement

Li

= o.
t=-K_

(16)

Condition (14) and (16) represent the minimum number of constraints which should

be imposed on the filter. Examples of weights for minimally constrained discrete
filters are given in Table 1 and associated Fourier transforms for some of these filters

are presented in Figs. 2-4. Examples of the Fourier transforms of minimally con-

strained symmetric filters with one, three, and five vanishing moments are presented
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FIGURE 2. Fourier transform G(k) of the symmetric minimally constrained dis-

crete filters with one (.... ), three (-----), and five (--) vanishing moments

corresponding respectively to cases 1, 6, and 10 given in Table I.

in Fig. 2. These filters correspond respectively to cases 1, 6, and 10 presented in

Table 1. We see that increasing the number of vanishing moments yields a better

approximation to the sharp cutoff filter, which is more appealing from a physical

point of view. It also can be observed that filters shown in Fig. 2 have different

effective cut-off frequencies. Thus, in order to control the effective cut-off frequency,
additional constraints should be introduced. The Fourier transform of asymmetric

filters with four vanishing moments corresponding to cases 8 and 9 presented in Ta-

ble 1 are shown in Figs. 3 and 4 correspondingly. Note that the asymmetric filters

introduce phase shifts due to their non-zero imaginary parts. The imaginary part
should be minimized by introducing additional constraints. Also notice the over-

shoot in the real part and absolute value of the filter shown in Fig. 3. In general,

an overshoot is not desirable since it may lead to non-physical growth of energy.
Additional constraints are necessary in order to reduce or remove overshoot.

In the interior of the domain, in order to eliminate the phase shift, the filter

should be symmetric, i.e. the following relation should be satisfied

w_=w _l, l=l,...,L, (17a)

L i=K i=L. (17b)

In this case the filter only adjusts the amplitude of a given wavenumber component

of the solution and leaves its phase unchanged. Near the boundaries, however,
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vanishing moments corresponding to case 9 given in Table I.
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ca.2e

2

3

number of
vanishing
moments

additional constraints

G(ATr/3) = 1/2

iG(-')(Ar) = 0, m = 0,..., 5

(_(ATr/2) = 1/2

= 0, m = 0,..., 1

(_(2A_/3) = 1/2

= 0, m = 0,..., 1

Wo W-4-1 W-4-2 W-4-3 W-4-4 W-4-5

, 373 911 203 11 203 61
11152 3456 1728 2304 6912 6912

! 9. 0 _1
2 32 32

47 35 II 1

72 144 144 144

TABLE 2. The values of the weight factors and the number of vanishing moments

for different linearly constrained discrete filters.

it may be necessary to make the filter asymmetric. In this case a phase shift is

introduced and one is interested in minimizing this effect.
Examples shown in Figs. 2-4 demonstrate the necessity of the introduction of

additional constraints which ensure that the resulting filter has all the desired prop-

erties. One way to constrain the filter is to specify either its value or the value of

its derivative for a given frequency k,. Examples of weights for filters with three

vanishing moments and different linear constraints are given in Table 2 and as-

sociated Fourier transforms for these filters are presented in Fig. 5. These filters

are constrained in such a way that the effective filter widths are 3A, 2A, and 3/2A

(corresponding to characteristic wavenumbers Ak,/Tr = 1/3, 1/2, 2/3). We observed
that for the filters with relatively small characteristic wavenumbers, the number of

zero derivatives at k = 7r/A should be considerably larger than for filters with char-

acteristic wavenumbers close to 7r/A. If we chose this number small enough, then
the value of the Fourier transform of the filter for frequencies larger then character-

istic wavenumber may reach a large amplitude. Thus setting the large number of

derivatives at k = _r/A forces the filter to have the desired shape.

_.2.2 Alternative construction of fil_ers with desired properties

Linear constraints are often enough to obtain the desired filter. However, there

are situations, especially for non-symmetric filters, where it is difficult to choose a

limited number of constraints such that the filter is close to the desired shape. It is

much more desirable to specify the target filter function Gt(k) and to construct a

filter which will be close to it. One way of doing so is to find the set of filter weights

which satisfy all linear constraints and minimize a following functional

_^ 2 fo*/a (9 . 2 (18)

where < {z} and 9 (z} denote correspondingly real and imaginary parts of a com-

plex number z. Note that integral ranges as well as relative weights for real and

imaginary contributions to the functional can be arbitrarily set depending on the
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FIGURE 5. Fourier transform G(k) of the symmetric discrete filters with different

additional linear constraints corresponding to cases 1 (.... ), 2 (--.--), and 3

(_) given in Table II.

filter function Gt(k). The mathematical details of the minimization are given in

VLM. Figure 6(a) shows an example of an asymmetric filter with eight point sten-
cil, (K = 2 and L = 5). The real part of the filter is constrained to be 1/2 at

Ak/_r = 1/2. The filter value and its first two derivatives are constrained to be zero

at k = _r/A. In order to improve the filter's characteristics, the minimization was

performed, where requirements for two derivatives at k = r/A were relaxed and

quadratic minimization as described in VLM was used instead. The resulting filter

is shown in Fig. 6(b). Comparing both filters we can see that the filter presented

in Fig. 6(b) has better characteristics. We found that, in general, minimization
procedure gives better filters than the ones obtained using only linear constraints.

_._.3 Pade filters

Discrete filters with vanishing moments are not limited to the simple weighted

average form of (13). Pade-type filters are described in this subsection as an example

of an alternative formulation. Other discrete filtering approaches can be utilized as

well but they will not be discussed here. A Pade filter is defined as

/Yj Lj

Z (19)
m=-M i t=-K_

and requires the solution of linear systems of equation s. The Fourier transform
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case

1

additional constraints v0 Vd:l v+2 V+3 W0 W:E1 W4-2 W-4-3 W+4 W=t=5

G(A_/3)--1/2 543 1405 313 51 63 105 15 45 5 1

_'(")(A_-) = 0, m = 0,..., 91

_(A_/2) = 1/2
_(")(A_) = 0, m = 0,..., 7

(_(2A_r/3) = 1/2

_(")(A_r) = 0, m = 0,..., 3

128 512 258 512 256 512 128 1024 512 1024

7 0 ! 7 175 5 35 0 I12 24 24 _6s 4s 1_36 153s

49 13 19 11 119 1 1
120 60 240 30 480 15 480

TABLE 3. The values of the weight factors for different linearly constrained sym-

metric Pade filters with five vanishing moments.

G(k) associated with Pade-type filters is given by

Lj Wi e_iAkl
d_(k)= _t=-K, (20)

N_ vJ e_iAkm "_,,,=-_j

In the case of Pade filters conditions (14) can be rewritten as

Lj

wi=1,
1= - Kj

Nj

(21a)

Z v/m = 1, (21b)
rn=-l_

Ni Ly

E: Z: l'wi, i = 1,...n - 1. (21c)

m=-Mj I=-Kj

It is straightforward to constrain Pade filters to a specific value at specific fre-

quency. Nevertheless linear constraining of filter derivatives G(m)(k) at certain

frequency requires additional specification of filter value as well as all previous

derivatives. For more details on Pade filters we refer to (Lele, 1992).

The use of Pade-type filters gives more flexibility in constructing filters which are

closer to spectral cut-off filters. Examples of weights for symmetric (Mj = Nj and

Kj = Lj) Pade filters with five vanishing moments and different linear constraints

are given in Table 3 and associated Fourier transforms are presented in Fig. 7.

Comparing Figs. 5 and 7 it can be seen that Pade filters are considerably better
approximations of sharp cut-off filters.

_.£._ Commutation error of discrete filtering and differentiation

In Section 2.1 we demonstrated that the commutation error of continuous filter-

ing and differentiation operators is determined by the number of vanishing moments
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FIGURE 7. Fourier transform G(k) of the symmetric Pade filters with different

additional linear constraints corresponding to cases 1 (.... ), 2 (--.--), and 3

(_) given in Table III.

of the continuous filter. As it was mentioned earlier in this section the same con-

clusion is valid for discrete filters. In order to validate that discrete filtering and

differentiation commute up to the same order, we perform a numerical test in which

we differentiate numerically the Chebyshev polynomial of the 16-th order and de-
termine the commutation error of discrete filtering and differentiation operators.

Since the derivative of the Chebyshev polynomial can be calculated exactly, we can
calculate the truncation error of the numerical differentiation as well. We choose

the nonuniform computational mesh to be given by

_2___
tanh (7 (1 N,))

xj = - tanh(3') '
(22)

where Ng is the total number of grid points and 7 is the stretching parameter. The

choice for the hyperbolic grid stretching is motivated by its frequent use in both

DNS and LES simulations of wall-bounded flows. For the hyperbolic tangent grid

the ratio of largest to smallest grid size is a function of stretching parameter 7 and
is given by cosh 3 _,/sinh'_. In this test we choose 3, = 2.75, which makes this ratio

approximately 62. The differentiation operator is chosen to be fourth order accurate

on the non-uniform grid. Figure 8 shows the truncation error of finite difference

scheme and commutation errors as a function of the total number of grid points

for filters with different number of zero moments. The results presented on Fig. 8

confirm that the discrete filtering and differentiation operators commute up to the

n-th order, provided that discrete filter has n - 1 vanishing moments.
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2.3 Gonclusion8

We have formulated general requirements for a filter having a non-uniform filter

width which ensure that the differentiation and filtering operations commute to

any desired order. Minimization of the commutation error is achieved by requiring
that the filter has a number of vanishing moments. Application of this filter to the

Navier-Stokes equations results in the standard LES equations which can be solved

on a non-uniform computational grid. The commutation error can be neglected

provided that the filter has n - 1 vanishing moments, where n is the order of the

numerical discretization scheme used to solve the LES equations. A general set of

rules for constructing discrete filters in complex geometries is provided. The use of

these filters ensures consistent derivation of discrete LES equations. The resulting

discrete filtering operation is very simple and efficient.

3. Future plans

The commutative discrete filters presented in this report enable us to perform

consistent large eddy simulations of inhomogeneous turbulent flows. The first step

in this direction is to study the effect of explicit filtering in LES of turbulent channel

flow. For that purpose we are planning to use the fourth-order scheme described

in (Morinishi et hi., 1997). A discrete filter with a number of vanishing moments

will be applied to the incremental field at the conclusion of each time step. This

procedure guarantees that no high frequency signal is added to the field from the
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previous time step. The dynamic procedure should be modified due to explicit fil-

tering of nonlinear terms. As more experience is gained with the explicit filtering,

it will be determined whether explicit filtering is a cost-effective means of improv-
ing simulation results. If so, explicit filtering will be applied to more complicated

problems.
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On the use of discrete filters

for large eddy simulation

By T. S. Lund 1

1. Motivation and objectives

The equations for large eddy simulation (LES) are derived formally by applying

a low pass-filter to the Navier-Stokes equations. This filtering must be repeated

at each time step in the solution procedure since the non-linear terms continually

generate frequencies higher than the assumed cutoff. In spite of this requirement,

an explicit filtering operation has rarely been performed in practice. There are a

few good reasons for this discrepancy, and perhaps the most compelling of these is

the prior lack of filter operators that commute with differentiation. Without com-

muting operators, the act of filtering alters the Navier-Stokes equations through the

addition of 'commutation error terms' (see Ghosal and Moin, 1995). Fortunately the

commutation issue has recently been resolved by Vasilyev and Lund (this volume)

who constructed filters that commute with differentiation to any specified order of

accuracy for arbitrary boundary conditions.

The use of explicit filters opens the possibility to improve the fidelity and con-

sistency of the LES procedure. By removing (or strongly damping) a band of the

highest frequencies allowed by the mesh, it is possible to reduce truncation and

aliasing errors. The filter is also well defined, which facilitates a comparison with

(filtered) experimental data. In order to realize these benefits, however, the filtering

process must be implemented correctly, and the filter itself should have satisfied a

few constraints in addition to those required by commutation. The purpose of this

paper is to outline the general procedure for explicit filtering and to specify the

constraints on the filter shape. A second objective of this paper is to revisit some

of the issues related to filtering in the dynamic model calculation and to propose a

general method of estimating the test filter width.

e Accomplishments

2.1 Ezplicig filtering procedure

Application of a commuting filter to the Navier-stokes equations leads to

cg_i
_ 0,

Oxi

af_ _ a_ + 1 c92fz,
0-'--(+ = Re Oz Ox i"

(1)

(2)

1 Present address: University of Texas at Arlington, Department of Mechanical and Aerospace

Engineering, Box 19018, Arlington, TX 76019-0018.
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The correlation uiuj is unknown in LES and is typically treated by computing the

product of the filtered velocities and modeling the remainder, i.e.

uiuj = uiuj + (u--_- uiuj). (3)

nj

If this decomposition is substituted into the filtered momentum equation, a closed

equation for fii is obtained provided a model for rij is supplied. This equation can
be advanced in time from an initial ui field, and no explicit filtering operation is

required during the solution process. While this observation seems a bit unsettling, it

is often argued that the wavenumber-dependent characteristic of finite-differencing

errors act as an effective 'implicit filter'. This argument is based on the following
equivalence between a finite difference and the exact derivative of a filtered variable

(See Rogallo & Moin, 1984)

- - udx = . (4)
-_x i 2Ax dx ,_,_, i

While this equivalence is undoubtedly genuine, there are two significant problems

with extending the above observation to filtering as it applies to the solution of

the LES equations. First, the equivalence requires a connection between the exact

derivative of the filtered variable and the finite difference of the unfiltered variable.

Thus a strict application of this law to the filtered Navier-Stokes equations would

require that the original filterings be removed when the finite difference approxima-

tion is made. In order to avoid this problem, one can consider applying a second
filter to the Navier-Stokes equations and allow this one to be removed when the fi-

nite differences are taken. As we shall see, this argument can not be made rigorous,

either, due to the second complication that has to do with the multi-dimensionality

associated with the Navier-Stokes equations. The filter used to derive the LES equa-

tions must be a three-dimensional operation that represents averaging the velocity

field over a small volume in space. The filter implied by the finite difference opera-

tor, on the other hand, represents an average in a single coordinate direction. Thus

each term in the LES equations is effectively acted on by a different one-dimensional

filter when finite differences are used. In particular, the actual equation being solved
is

off, ' ' ' ' x' "
--.+--+ + = _-
Ot Ozl Oz2 Oz3 Oz_ Ozl Oz2 Ox3

Re L + o2x-----T+ 02x---T'
(5)

where (_x, and 0_' are the effective one-dimensional filters associated with the first

and second difference approximations respectively. It should be clear that the above

equation can not be derived from the Navier-Stokes equations since the various
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effective filters are not distributed uniformly. We conclude that although there

is an inherent filtering operation associated with finite-difference approximations,
their use does not lead to a well-defined effective three-dimensional filter.

With the issues associated with finite differences aside, there is another difficulty

associated with the use of the decomposition given in Eq. (3). The problem with

this formulation is that the non-linear product f_ifLj generates frequencies beyond

the characteristic frequency that defines ui. These high frequencies alias back as

resolved ones and therefore act as fictitious stresses. In principle the subgrid-scale

model, rij, could exactly cancel this effect, but it is unlikely that such a model

could be arranged. The obvious way to control the frequency content of the non-

linear terms is to filter them. This strategy would result in the following alternative

decomposition:

u uj = + - (6)

If this relation together with a subgrid-scale model for vii is substituted into Eq. (2),

one again obtains a closed equation for ui, but this time with an additional explicit

filtering operation applied to the non-linear term. We now see that the implicit

filtering implied by the finite-difference operators shown in Eq. (5) is similar, al-

though the one-dimensional filterings are not nearly as effective at controlling the

frequency content of the solution.

While the decomposition of Eq. (6) has several advantageous properties from the

point of view of explicit filtering, there is one significant side effect that should

be mentioned. It can be shown that if Eq. (6) is substituted into Eq. (2), the

resulting equation is in general not Galilean invariant. The residual takes the form

cj d(_i- f_i)/dxj, where cj is the uniform translation velocity. The error is seen to be

proportional to the difference between the singly and doubly filtered velocity. This

difference will be zero for a Fourier cutoff filter, but will not vanish in the general

case. The spectral content of the error is proportional to G(k)(1 - G(k)) where

G(k) is the filter transfer function. This fact implies that error is only generated in

the wavenumber band where G(k) differs significantly from 0 or 1. It is also clear

that the error is maximized at 25%. Thus it is possible to minimize the error by

constructing the explicit filter to be as close as possible to a Fourier cutoff. It is also

possible to eliminate the Galilean invariance error all together by switching to yet

another alternative decomposition. This step amounts to adding a scale-similarity

like term to the filtered Navier-Stokes equations. The difficulty in this approach

is that the scale-similarity term generates higher frequencies and thus spoils the

explicit filtering procedure. Clearly this issue will require further study. At the

present time it appears best to continue with Eq. (6) but to use a filter that is as

close as possible to a Fourier cutoff. We shall see that there are other compelling

reasons to use this type of filter, and thus its use would be natural in practice.

In order to illustrate the explicit filtering procedure further, consider an Euler
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time stepping method applied to the LES equations:

= u i + At Ozj Oxi Oxj + Re OxjOxj J (7)

Note that the frequency content of each term on the right-hand side is limited

to the bar level (provided the subgrid-scale model is properly constructed). Thus
in advancing from time level n to n + 1, the frequency content of the solution is

not altered. This fact implies that the additional filtering of the non-linear term

(plus and analogous treatment of the subgrid-scale model) is sufficient to achieve an

explicit filtering of the velocity field for all time. It is also important to note that

the procedure outlined above is in general different from the 'filtering of the velocity

field after each time step' procedure that has been alluded to in the literature, i.e.

= u i + At Oxj Oxi Oxj + Re OxjOxjJ '

l_in+l .._ Q_n+l.

While this approach results in the correct treatment for the non-linear term, it is

incorrect since the remaining terms are filtered twice. In particular, the additional

filtering of the solution at the previous time level, _ is particularly harmful since
the cumulative effect over several time steps implies multiple filterings of the velocity

field, i.e.

_'_+_ = _'_-_ +AtR "-_ + At[t".

In general, repeated application of the same filter implies a filter with increased

width, and thus the procedure of filtering the velocity field after each time step
results in a severe loss in spectral information 1

With the correct explicit filtering procedure established (i.e. Eq. (7)), we are now

in a position to address some of the more subtle issues involved, the first of which is

commutivity. As discussed above, the issue of commutation between the filter and

derivative operators arises mainly in deriving the LES equations from the Navier-

Stokes system. Explicit filtering, on the other hand, involves the decomposition of

Eq. (6) where the filtered product, uiuj , is replaced with ftifij + r_j. As we have
seen this decomposition is not unique, and the decision to add the second bar to

the non-linear term is not required in the basic derivation of the LES system, but
rather is used simply as a convenient means to control the frequency content of the

solution. Furthermore, Eq. (6) is a substitution for uiuj, which appears inside the
divergence operator. Thus, perhaps surprisingly, there does not appear to be any

direct commutation requirement on the second filter. Of course, there is an indirect

1 It is important to note that the above argument does not apply to the Fourier cutoff filter where

repeated application has no cumulative effect. In this special case, filtering the velocity field at

each time step is permissible and is equivalent to the general procedure listed in Eq. (7).
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requirement if one requires the first and second bar filters to be identical (since
the former was used in the derivation of the LES system). It is not clear whether

consistency in this regard is really required in practice, however, and is appears

possible to use the second alternative decomposition

13

(8)

where 0 -_ 0 is a (perhaps non-commuting) approximation to the primary filter 2.
A second subtle issue concerning explicit filtering has to do with an associated

false dissipation. The non-linear term in the classical LES decomposition (Eq. (3))

is energy conserving since fiid(fiifij)/dzj = d(fijl/2fii_i)/dxj, and thus an inte-

gral over the volume collapses to the surface fluxes via Gauss' theorem. Unfor-

tunately this situation is changed when an explicit filter is applied to the non-
linear term. The second filter on the non-linear product prohibits the redistribu-

tion of velocity components used to obtain a divergence form and one is left with

_id(_)/dxj = d(fii_)/dxj - (d_i/dxj)_. The second term on the right-
hand side does not vanish in general when integrated over the volume and in fact
bears some resemblance to the turbulent production. More quantitative informa-

tion regarding the false dissipation can be obtained by looking at the Fourier-space

energy equation for isotropic turbulence which reads

dE(k)

dt -- (-ikfi_PmiG( k ) k_=Pp_+qqfii(p)fij(q)} - _-_ k2 E( k ),

r'(k)

where E(k) = 1/2(fi_fii) is the spectral energy density, fii is the Fourier transform

of the velocity (bar omitted for simplicity), Pli is the divergence-free projection

operator, a(k) is the transfer function associated with the explicit filter, ()* denotes

complex conjugate, and () is a shell average. It is clear that the explicit filter affects
only the non-linear transfer term, T(k). This term will be conservative if its integral

vanishes, i.e. f_,o T(k)dk = 0. It can be shown that the integral will indeed vanish
if the filter function G(k) is a Fourier cutoff that passes frequencies up to some limit

kmaz and if the velocity field is truncated at this level before the transfer term is

constructed (Kraichnan, 1976). For non-sharp filters the transfer will not integrate
to zero since the weighting introduced by a smoothly-varying G(k) destroys the

symmetries required to achieve complete cancellation. Further analysis reveals that
the residual transfer arises only out of interactions with wavenumber components

where G # 1. The sign of this residual transfer is not fixed kinematically but

is constrained to be negative for developed turbulence with a normal down-scale

2 The formulation with an approximate second filter is probably always required in practice since

even 'commuting' filters only do so to a specified order of accuracy (see Vasilyev and Lund, this

volume)
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energy cascade. Thus non-sharp filters lead to a false dissipation that is proportional
to the degree to which the filter departs from a sharp-cutoff. For this reason, it is

important to use filters that are close approximations to a Fourier cutoff.

It is worthwhile to note that the approximately-commuting filters developed by

Vasilyev and Lund (this volume) become increasingly better approximations to a
Fourier cutoff as the commutation error is reduced. Thus use of these filters will

allow for a consistent explicit filtering scheme (first and second filters the same) and
will introduce only a small amount of false dissipation.

_._ Accurate entimafion of di, crete filter width

The previous discussion was concerned with explicit filtering of the non-linear

terms as a means to improve the fidelity of the LES approach. In this subsection
we consider a rather distinct filtering operation that is used in the dynamic mod-

eling procedure. In order to estimate subgrid-scale model coefficients, the dynamic

model uses a 'test filtering' operation to isolate the stresses produced by a band

of the smallest resolved motions. Fitting model expressions to these stresses then

provides a mechanism to determine any unknown model coefficients. The only pa-

rameter in the dynamic procedure is the ratio of the test to primary filter width,

a, which is usually taken to be a = 2.0 (there is very little sensitivity to this pa-

rameter). It goes without saying that the numerical value of the filter width ratio
used in the dynamic procedure must match the properties of the test filter actually

used in the calculation. While this seems like a trivial point, there can be some

ambiguity in determining the test filter width. Any errors in this regard will have

a negative effect on the solution and should be avoided. There has also been some

discussion in the literature regarding the importance of the test filter shape. While

the dynamic model derivation presupposes that the test filter is similar in form to

the primary filter, there have been several attempts to improve on matters by 'op-

timizing' the test filter shape (Najjar and Tafti, 1996, Spyropoulos and Blaisdell,

1993). As we shall see most of these latter attempts involve fortuitous results that
arise from use of an inconsistent filter width. In order to assess the effect of test

filter shape, a numerical experiment was designed to investigate this issue. The

isotropic decay experiment of Comte-Bellot and Corrsin (1971) was simulated using

LES on a 323 mesh. The pseudo-spectral code of Rogallo (1981) was used with

the volume-averaged form of the dynamic Smagorinsky model forming the closure.

The test filter type was varied and the resulting kinetic energy decay histories com-

pared with the (filtered) experimental data. The kinetic energy history provides a

good measure of the accuracy of the subgrid-scale model since the model provides
the bulk of the dissipation at this coarse resolution. The test results are shown in

Fig. 1. It is clear that the filter type has almost no effect on the results. This fact
is reassuring since it provides additional evidence on the robustness of the dynamic

model. It also raises an interesting point that, although the derivation would sug-

gest otherwise, there does not seem to be any practical requirement for the test and

primary filters to be of the same form (Fourier cutoff in this case).

As mentioned above, most of the perceived sensitivity to test filter type noted
in the literature has to do with the use of an incorrect value for the filter width
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FIGVaE 1. Resolved kinetic energy decay history computed with the dynamic

model using various test filter types: _, Fourier cutoff; .... , Gaussian; ........ ,

physical space top-hat; • , experimental of Comte-Bellot and Corrsin (1971).

ratio. This difficulty is usually associated with the inability to estimate the test

filter width properly. These difficulties can be avoided by following the procedures
listed below.

The width of a positive-definite filter is described best in terms of its standard

deviation (Leonard, 1973):

A l = 12 x2G(x)dx, (9)

where the factor of 12 assures that the width of a physical-space top-hat filter is

equal to the interval over which the filter kernel is non-zero. While this formula

has been available for quite some time, it does not seem to have been transferred to

the realm of discrete filters, which are much more common in practice. The general
discrete filter

(N-1)/2

= wi,,,+i (io)
i=-(N-I)/2

has an associated kernel that can be written as

(N-1)/2

G(x - z') = E Wj6(x - x' + jA). (11)
j=-(N-1)/2
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When this expression is substituted into Eq. (9) and the integral performed, we

arrive at the following discrete analog

I (N-_)/a
a =AI/A = 12 _ j2Wj,

j=-(N-I)/2

(12)

where A is the computational grid spacing.

In order to illustrate the importance of an accurate estimation of the test filter

width, we shall consider two different discrete approximations to a physical space

top-hat filter of width 2A,

a(z)- I [,+a, udx. (13)
2Ax J_-_r

In a discrete system we consider fi(xj) = fij where j is the mesh index. The integral

is evaluated over the interval from x)-l to zj+l where only the three discrete values

u j-l, u j, and uj+l are available. If Simpson's rule is used to perform the quadrature,

we obtain the sequence of weights (W-l, W0, W1) = (1/6, 2/3, 1/6). If these values

are substituted in Eq. (12), we find AI/A= 2 as expected. If the trapezoidal rule is

used to evaluate the integral, however, we obtain (W-l, Wo,W1) = (1/4,1/2, 1/4)
which, according to Eq. (12), have a width AI/A = Vr6. Thus, perhaps surprisingly,

the details of the discrete quadrature can affect the filter width. This is a subtle

point that has been overlooked in several previous dynamic model simulations. If

the weights associated with the Trapezoidal rule are used but the inconsistent value

of the filter width ratio 2.0 is used, the dynamic modeling procedure will loose

accuracy. Figure 2 illustrates this effect where kinetic energy decay histories are

shown for three cases: (1) Simpson's rule, a = 2; (2) Trapezoidal rule, a = 2; and

(3) Trapezoidal rule, a = v_. The first and third cases use consistent values of
the filter width ratio and axe seen to lead to nearly identical results that are in

good agreement with the experimental data. Case (2), on the other hand, uses an

inconsistent value of the filter width ratio, and the results are clearly incorrect. If

the subtle details of how to compute the filter width ratio correctly were not known,

one might mistakenly attribute the poor performance of case (2) to the filter type

itself. Unfortunately this type of confusion has appeared in the literature, and

there are papers that recommend one filter over another (Najjar and Tafti, 1996,

Spyropoulos and Blaisdell, 1993).

The foregoing discussion regarding discrete filters assumes that the discrete sec-

ond moment used in Eq. (12) is non-zero. There are an important class of filters
where this is not the case, however. In particular, Vasilyev and Lund (this volume)

show that a filter with n - 1 vanishing moments will commute to with differentiation

to order n. Since the n th filter moment is directly related to the rt th derivative of

the filter transfer function at zero wavenumber, a filter with n vanishing moments

also has n vanishing derivatives at the origin in wavenumber space. Thus by Taylor

series, the transfer function remains very close to unity for sizable displacements in
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FIGURE 2. Effect of a mismatch between the true test filter width and the value

used in the dynamic model calculation. -- , Simpson's rule, a = 2.00; .... ,
Trapezoidal rule, a = 2.00; ........ , Trapezoidal rule, a = v_; • , experimental of

Comte-Bellot and Corrsin (1971).

wavenumber, making these filters good approximations to a Fourier cutoff (at least

for low to moderate wavenumbers).

The use of filters with vanishing moments presents a problem since the width can

not be based on the second moment a la Eq. (12). While a similar expression based
on a higher moment could be used, one would eventually encounter a filter where
even this moment vanishes. Several more robust definitions of the filter width were

investigated and these will be discussed below.

In order to facilitate the discussion, it will be convenient to consider the filter

transfer function, which is obtained by taking the Fourier transform of Eq. (11),
viz.

(N-I)/2

G(k) = _ Wjcos(jk_). (14)
jf-(N-1)/2

In deriving this result the weights are assumed to be symmetric with respect to j.

The first alternative method of determining the filter width takes advantage of

the fact that some of the weights must be negative in order for the sum in Eq. (12) to

vanish. More specifically, if a trigonometric interpolant is fit through the weights as

a function of their index, an oscillatory distribution similar to the sin(rx/A l)/(_rx)
function characteristic of a Fourier cutoff is obtained. The position of the first zero

crossing can then be used as an estimate of the filter width. The interpolating series
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is

(N-O/2

= G,exp
jf-(N-I)/2 k N A] '

where the Gj axe the discrete values of the filter transfer function:

(15)

Gj=G\NA]= Z Wlcos l==_= . (16)
l=-(N-1)12

Note that the interpolant is purely real since the G i must be symmetric with respect
to j.

The second alternative strategy works directly with the filter transfer function.

In this case the filter width is taken to be proportional to the inverse wavenumber

where the filter transfer function falls to 0.5. This rule gives a = 7r/(kfA).

The third alternative is to base the filter width on the second moment of the filter

transfer function rather than on the second moment of the filter kernel. Defining
the second moment as

_r/AM 2 = k2G(k)dk (17)
J0

we may estimate the filter width from

_r3 ]_a= 3MaA 3 (18)

The constants in this formula were chosen so that it predicts the correct width
in the case of an exact Fourier cutoff. The second moment for a discrete filter is

found by substituting Eq. (14) into Eq. (17) and performing the integration. These
operations lead to

(_I_ j2 1

(-1F
Wo + 4,_ w_ ,

j=l

(19)

where weights are assumed to be symmetric with respect to j. Combining Eqs. (18)
and (19) we obtain the final result

(N-1)12 I -_

12 (-IF
a = Wo + -_ Z j'--'i-Wi (20)

j=l

As an illustration of a filter that has a vanishing second moment in physical space,

consider filter C discussed by Najjax and Tafti (1996). The stencil contains 7 points,

and the weights are (1/256)(1, -18, 63, 164, 63, -18, 1). The interpolating function
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FIGURE 3. Filter weights and associated transfer function for filter C of Najjar

and Tafti (1996).

for the weights as well as the filter transfer function are shown in Fig. 3. The position

of the first zero-crossing in physical space gives the estimate a _ 1.55, the location

of the G = 0.5 point gives a _ 1.53, and the second moment of the transfer function

gives a __ 1.46. While the three methods give nearly the same result, we shall see

that there is a slight advantage to width predicted by the second moment. Other
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FIGURE 4. Results for a filter with a vanishing second moment in physical space.

, Fourier cutoff; .... filter C, a = 2.00; __.m, filter C, a = 1.55; ........ ,

filter C, a = 1.46. Filter C has weights (1/256)(1, -18, 63, 164, 63, -18, 1) and is

described in Najjar and Tafti (1996).

filters were investigated where differences among the three estimates of the width

were greater, and in each case the second moment rule predicted the width most

accurately. The Najjar and Tafti filter was chosen for the purpose of illustration

since these authors incorrectly assigned a value of a = 2.0 to this filter. The effect

of this mismatch is shown in Fig. 4 where the kinetic energy decay history is plotted

for the Najjar and Tafti filter using several different values of a. The value a = 2.0

is clearly incorrect while the estimate a " 1.46 given by the second moment of
the transfer function is the most accurate. While Najjar and Tafti observed some

improvement in their computational results when filter C was used with a = 2, this

was most likely a fortuitous effect brought on by a cancellation of errors. Chances

are that, if a = 1.46 were used instead, the results would have been nearly identical
to their other cases where the value of a was consistent with the filter used.

3. Conclusions and future plans

Explicit filtering can be used in the LES solution procedure as a means of reducing

truncation and aliasing errors. The required operation involves only filtering the
non-linear terms and amounts to a slightly different definition of subgrid-scale stress.

The procedure is in general different from filtering the entire velocity field at each

time step, which could lead to a severe damping of even the largest scales. The
explicit filter must commute with differentiation only if one insists that the primary

and secondary filters be identical. If strict consistency in this regard is not required,
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more general filters can be considered, and the use of approximately commuting

filters can be justified on a higher level.

The dynamic modeling procedure was shown to be extremely robust with respect

to the test filter type but quite sensitive to mismatches between the true filter
width ratio and the value used in the calculation of the model coefficient. Much

of the apparent sensitivity to test filter type reported in the literature is related

to inaccurate estimates for the test filter width and not to the shape of the filter

itself. General rules were developed for accurate estimation of test filter width, and

these are related to the second moments of either the filter kernel or its associated

transfer function.

Future work will focus on the use of explicit filters in actual large eddy simula-

tions. This work is in progress, and some preliminary results for three-dimensional

explicit filtering in turbulent channel flow simulations have been obtained. The

indication from these tests is that, while explicit filtering definitely improves the so-

lution, some issues have arisen regarding the required reformulation of the dynamic

model as well as the smearing effect of filtering in the inhomogeneous wall-normal

direction. Current work is focusing on resolving these issues and in assessing the

overall effectiveness of the explicit filtering strategy.
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Wall models in large eddy
simulation of separated flow

By W. Cabot

1. Motivation and objectives

The desire to perform large eddy simulation (LES) of wall-bounded turbulent
flows at relatively high Reynolds numbers is typically confounded by the severe

resolution requirements near the walls. The structure of the turbulent flow in a

boundary layer can become very fine in the near-wall region, scaling as the distance

from the wall, and the numerical grid required to resolve it, therefore increases

dramatically with Reynolds number. In channel flow LES at moderate Reynolds

number, for instance, about half of the grid points must be dedicated to the near-

wall flow when it is resolved on a stretched mesh, and the time step is severely

reduced by the CFL condition for the fine near-wall scales. The situation becomes

even worse at higher Reynolds numbers. The finer near-wall scales also require the

subgrid-scale (SGS) model in the LES to describe a larger share of the Reynolds
stress than in the core of the flow; this may lead to substantial inaccuracies when

standard SGS models based on isotropic models, like the popular Smagorinsky

model, are employed in the near-wall region.

To perform LES of high Reynolds numbers, wall-bounded turbulent flow, one

needs to remove the requirement of resolving the near-wall region by (a) simulating
only the core region of the flow with approximate boundary conditions applied on

the boundaries, or (b) simulating the entire domain, including the walls, with the

near-wall forces appropriately modeled. Approach (a) has much in common with

domain decomposition methods (see Baggett in this volume). Approach (b) has

been employed by Deardorff (1970), Schumann (1975), GrStzbach (1987), Piomelli

et al. (1989), and others (see reviews by Piomelli et at., 1989; Bagwell et al., 1993),

who supplied boundary conditions for the flow components tangential to the walls

in a channel based on the logarithmic law of the wall. Balaras et al. (1996) and
Cabot (1995, 1996) also employed thin boundary layer equations to predict wall

stress boundary conditions in attached channel and duct flow and in separated flow

behind a step. While this strategy works adequately in predicting accurate mean

flow statistics in attached flow, it fares more poorly in separating, reattaching, and

recovering flow, in part because the assumptions used in modeling the wall (near-

wall equilibrium conditions that give rise to the log law, or thin boundary layer

approximations) break down.
The broad objective of this work is to develop a procedure, or set of procedures,

for modeling the near-wall region in LES such that the numerical grids can be chosen

independent of Reynolds number Re, based instead on the outer scales (determined,

e.g., boundary layer thickness and flow geometry) or on the core turbulent integral

length scales, which remain finite as Re _ oc. This procedure should be general
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FIGURE 1. Wall stress boundary conditions are applied at the physical wall

location, while off-wall boundary conditions are applied at a location away from the

wall. Heavy lines represent the core flow's mesh, while the fine lines represent a fine
near-wall grid which may be used by the wall model to generate boundary conditions

(algebraic relations may also be used). The wall model extracts flow information
from the core flow at an interior point and returns boundary conditions at the core

flow's boundary. The distance between arrows illustrates the amount of overlap

between the matching conditions.

enough to give accurate LES results in both attached and separated flow cases,

and it should be substa.ntially cheaper to use than LES with well resolved walls.

There are several (interrelated) issues that need to be addressed on the way to

developing successful wall modeling procedures. First, one needs to decide how
accurate the LES results for the core flow need to be to deem the procedure a

success. This is clearly subjective and depends on the tolerance of the particular

flow problem, but at minimum it would be desirable to be able to predict mean

flow speeds or mass flow to a few percent and other first-order wall quantities such

as skin friction and pressure coefficient. The other physical and numerical issues
concern making accurate (enough) wall models, patching together the near-wall and

core flow solutions, and constructing consistent SGS models in the wall regions of
flOWS:

(1) Is it more advantageous to apply wall boundary conditions (a) off of the wall,

completely removing the wall from the LES, or (b) at the wall, keeping the

wall in the LES? The difference between these types of boundary conditions

is illustrated in Fig. 1. Numerical issues about gridding and stability arise in
this case as well as the accuracy of the wall model used to supply the boundary
conditions.

(2) What physical quantities need to be specified in the boundary conditions for
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the core flow, and how accurate do they need to be? Velocity or velocity-

gradient boundary conditions will be considered here since the velocity is the
primitive variable in the simulation codes.

(3) What is the best near-wall model, or set of models, in terms of accuracy and
cost, needed to describe a wide variety of physical flow conditions? Some

form of the law of the wall may apply for attached boundary layers, but more

general models are required, e.g., for separated flow. Thin boundary layer

equations are inappropriate near flow separation and reattachment, and the

cost of computing them is also generally Reynolds number dependent, which

will become prohibitively expensive in many practical flows.

(4) What physical information from the core flow is needed for a particular wall

model to specify accurate wall stress or off-wall boundary conditions? The
location in the core flow where information is extracted can be a issue for

stability and accuracy if it is too close to the numerical boundary and leads

to spurious feedback effects.

(5) What modifications are needed in the SGS model of residual Reynolds stresses
in the near-wall regions? The standard Smagorinsky SGS model, even when

used with the dynamic procedure (Germano et al., 1991), may predict in-

accurate Reynolds stresses in the near-wall region, especially on very coarse

meshes that effectively filter over large wall-normal variations in the flow. At

what resolution does the SGS model give reliable results, and in turn, how

close to the wall can one get with the LES? And how does one perform fil-

tering near walls on coarse meshes, or alternatively, how does one model the

implicit effects of this filtering properly?

The immediate goal of recent work (also see Baggett and Jim_nez & Baggett in

this volume) is to provide answers primarily to issues involving the proper type of

boundary condition to supply the core flow and how to fit them consistently with
the SGS model used in the LES. Here results from wall modeling experiments in two

types of separated flows are discussed in relation to these issues. The shortcomings

of wall stress models in the separated flow behind a backward-facing step (Akselvoll

& Moin, 1995) noted by Cabot (1996) is reexamined briefly. Because one difficulty

in this flow was the treatment of the corner behind the step, separated flow on a

flat plate due to an induced adverse pressure gradient (Na & Moin, 1996) is being

developed as a test bed for wall modeling without the geometric complications of

the step.

2. Accomplishments

_.1 Near-wall momentum balance in the flow behind a step

Various models based on the law of the wall, using either instantaneous log laws

or boundary layer equations, were employed by Cabot (1996) to provide wall stress
boundary conditions on the coarsely resolved bottom wall behind the backward-

facing step. In all instances, including the use of no model at all (in which the wall

stress in underpredicted by a factor of 2-3), the main separation bubble is observed

to accelerate in a deeper pressure low than observed in the LES with resolved walls
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(Akselvoll & Moin, 1995). The backward flow penetrates all the way to the step,

washing out secondary recirculation features in the corner. On the other hand, the

reattachment length and the wall stresses for the attached flow at the outlet were

generally well predicted. It was noted that the backward flow has a jet-like structure

near the wall, which is unresolved on the coarse mesh, making models based on the

law of the wall particularly suspect.

To test the hypothesis that it was the poorly predicted wall stress that caused the

aberrant flow behavior, the correct mean wall stress was supplied from Akselvoll &

Moin's LES, with the instantaneous values made proportional to the tangential ve-

locity above the wall sublayer (similar to the way Schumann, 1975, and Grhtzbach,

1987, applied wall stresses in channel flow). This had surprisingly little effect on

the flow development of the separation bubble compared with other wall mod-

els. In a related test, the "exact" wall stresses were recorded for a (step-to-outlet)

flow-through time using AkselvoU & Moin's code and were fed as wall boundary

conditions to the poorly resolved case using the same initial field. Again, an accel-

eration of the separation bubble toward the step was noted. Note that extending

this test to longer times may not be very meaningful because the flow structure in

the poorly resolved case may deviate significantly from the resolved case and the

wall stresses can no longer be considered exact. Both of these tests suggest that

other factors than poor wall stress models are at play here since the anomalous flow

behavior occurs even when "good" wall stresses are applied.

One possibility is that the Reynolds stresses being predicted by the SGS model

are too inaccurate on the coarse grid near the wall. In this LES, only horizontal

(plane) filtering is used in the dynamic procedure with an isotropic (Smagorinsky)

base model. Because the grid is very coarse in tile wall-normal direction (Ay+ _ 40

at the outlet), the implied grid filter spans large variations in the variables, making

the SGS model responsible for a larger fraction of the Reynolds stresses. The mean

correction to the streamwise advection term due to wall-normal filtering from the

wall at y=0toy=yt,

Oxj uju dy - --Yt uj dg yt-- u dy , (1)

averaged over a flow-through time, is shown in Fig. 2 in comparison with the cor-

rection to the wall friction. The advection correction is comparable to the friction

correction in the separated region (x/h _-, 2-7), but it becomes more negligible

downstream in the attached region (x/h > 7). The similarity in shape of the two

terms is interesting and suggests that there may be fairly simple ways to model

the correction to the advection term. When both of these forcings were applied

in the wall cells of the coarsely resolved LES, the separation bubble accelerated

less toward the step, but the trend was still evident. Perhaps the flow readjusted

itself to a different state with this forcing, or other errors due to the low order of

the numerical scheme cause substantial differences for on the coarse mesh. In any

case, the general conclusion that can be drawn from Fig. 2 is that wall-normal fil-

tering must be taken into account on coarse near-wall grids either through explicit
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FIGURE 2. The mean correction to the advection term ( -- ) in the streamwise

momentum equation due to wall-normal filtering (eq. [1]), and the mean correction

to the molecular friction ( .... ) due to underresolution of the wall gradient in the

flow along the wall behind a step, computed from a well resolved LES and averaged

over span and a flow-through time.

test-filtering in the dynamic procedure or by explicitly modeling the effect of the

near-wall inhomogeneity with additional stress or forcing terms. Filtering normal

to boundaries is difficult to apply in concept and in practice, and it is unlikely to

provide a reliable estimate of near-wall stresses anyway if the models are based on

isotropic turbulence. More general SGS models are probably needed in wall re-

gions, e.g., based on Reynolds-averaged Navier-Stokes (RANS) models (Bradshaw,

personal communication).

_._ Separated flow in an adverse pressure gradient

Weak separation in this boundary layer flow over a flat plate is produced by

an adverse pressure gradient induced with strong blowing and sucking on the top

boundary (Na & Moin, 1996). The inlet boundary layer flow has a Reynolds number

of 300 based in momentum thickness and 500 based on displacement thickness (6).

The DNS computes the 357 x 64 x 506 (streamwise, wall-normal, spanwise) domain
on a 512 × 192 × 128 mesh stretched in the wall-normal direction. The simulation

code uses second-order central finite differences on a staggered grid with third-order

Runge-Kutta time advancement and a fractional step method for the pressure.

Preliminary tests of off-wall boundary conditions were performed with the core

DNS flow by removing the mesh below y/6 ,_ 2; this corresponds to y+ _ 50 at

the inlet, or 1/3 of the total mesh points, and it cuts through the middle of the

separation bubble. Simulations were limited to about a quarter of a flow-through

time because of their great expense. Horizontal velocities or their wall-normal gra-

dients were specified at the new lower boundary. The wall-normal velocity needed
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to be specified (rather than its gradient) in order to fix the global mass balance in

the numerical scheme. A simple stress balance model with a mixing length eddy
viscosity was used to represent the horizontal velocity components in the near-wall

sublayer at each horizontal position on the lower boundary:

Out 0 c3uo
( v + VT )-:-_-:- , vT = _yurD 2

Ot c3y c,y
D = 1 - exp(-yur/vA+), (2)

for g = 1,3, where v and UT are the molecular and eddy viscosity, _ is the yon

K£rmKn constant, y is the distance from the wall, u_ is the friction velocity, and D

is a wall damping function using the constant A+ = 17. This model gives a meld

between a log law and a viscous law, which works adequately for attached flow. The

wall-normal velocity is given by continuity:

u2=- \Ox + Oz ]dY" (3a)

The horizontal velocity in the sublayer is set to zero at the wall and is matched to
the core flow at a height somewhat above the lower boundary of the core flow (as in

Fig. 1) at Ym/8 _ 3 (y+ _ 75 at the inlet). This overlap was found to be necessary

to avoid an unstable feedback between the boundary and matching conditions; a

more precise description is needed for the minimum amount of overlap required.

Even this overlap was not sufficient when the wall-normal velocity was computed

by integrating down from the matching point:

= V(Vm)+ \ Ox + / dr' . (3b)

There was no substantial difference using the horizontal velocity or its gradient as
the boundary condition for the core flow. The largest effect was due to the low

Reynolds stress at the boundary when Eq. (3a) was used instead of (3b); this led to
a noticeable acceleration of the flow over short runs. The use of (3b), however, led

to long-term instabilities at the boundary. Equation (3b) also generally yields non-

zero wall transpiration. The magnitude of the wall stress in the separated region is

very small both in the DNS and the wall model case, and the backflow there did not

change appreciably. Sufficiently accurate Reynolds stresses at off-wall boundaries

appear to be needed to obtain good core flow results. We are currently investigating
how much structural information is actually required by the core flow.

Because the DNS runs are very expensive to perform on vector supercomputers, a

less expensive LES version is currently being evaluated on grids with 7 and 20 times

fewer grid points than in the DNS; this code will also eventually be converted to a
parallel architecture. The stability of this simulation has been found to be sensitive

to grid spacing and stretching in the region where the blowing from the top meets

the stream as it rides over the separation bubble. Without SGS or wall models,

the flow is found to separate noticeably farther downstream than in the DNS, but
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reattachment is at approximately the same location. The LES being tested uses the
dynamic procedure with explicit spatial volume filtering and a mixed base model for

the residual Reynolds stress (inspired by Bardina .et al., 1980, and Piomelli et al.,

1988) comprising a "scale-similar" or "Leonard term", which effectively deconvolves
the low wavenumber part of the field for broad filters, and the usual dissipative

Smagorinsky part:
r ~ u u- fi_ - 2utg, (4)

where the overbar denotes the volume filter for the resolved field and ut is the eddy

viscosity determined by the dynamic procedure. The dynamic procedure formula-

tion of Vreman et al. (1994) is used, although other formulations are possible (e.g.,

Zang et al., 1993). The mixed model has the nice property of accounting for the

large scale features of the flow in the residual stress (in this case, the blowing and

sucking at the top boundary) that otherwise would lead to erroneous estimates of
the eddy viscosity, which is only meant to account for small-scale energy transfer.

(Alternatively, one could apply the high-order accurate filters developed by Vasilyev
in this volume to avoid the spurious residuals.)

Both wall stress and off-wall boundary conditions have been implemented in the

LES code and will be tested in the future. A matter of particular concern is per-

forming explicit filtering near boundaries. The problem is that one can only resolve
a boundary to within the filter width, which can span several grid points with test

filtering in the dynamic procedure. This is not so critical for the top (blowing and

sucking), inlet, and outlet boundaries, where one can extrapolate values from the

interior without doing much damage. The main concern is near the lower boundary
on coarse meshes. When the flow is resolved near the wall, wall-normal filtering has

little effect, and one can appeal in any case to known asymptotic behavior. It may

also be possible to extrapolate values near the off-wall boundary with sufficient ac-

curacy, but this will need to be carefully tested. When the coarse LES mesh extends

all the way to wall, it becomes very difficult to estimate the near-wall SGS resid-

ual stresses through test filtering, and no simple extrapolation or interpolation may
work. In this case, a new or supplemental near-wall model for the residual Reynolds

stress may be required. Another possibility would be to contract the wall-normal

test filter toward the grid filter level as one approaches the wall; however, it is not

known how badly the test signal will degrade near the wall or if there are other
significant commutation errors introduced by such a procedure.

3. Future plans

Large eddy simulations of the separated boundary layer on a flat plate will be

performed on meshes with coarse and fine near-wall meshes; we will then try to

reproduce the statistics of the LES in which the wall is well resolved using both off-

wall models and wall stress models. The main focus will be in the following areas:

(1) SGS modeling: An accurate way will be developed to predict residual Reynolds
stresses from the SGS model on coarse near-wall meshes, which will be implemented

in the separated boundary layer simulations and perhaps in the simulation of flow

over a step. As a guide DNS fields for these flows (Na & Moin, 1996; Leet al., 1997)
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FIGURE 3. Scaling of the magnitude of the skin friction with backflow Reynolds

number (see Eq. [5]) in recirculating regions behind a step in Akselvoll ,_ Moin's

(1995) Reh = 28000 LES: D primary, o secondary, and ,, tertiary recirculation

regions; -- Leet al. 's (1997) fit from a DNS at Reh = 5100. The fall-off at

the lower right occurs for points near the head of the main separation bubble at

z/h _ 2.

will be filtered to give residual stresses. (2) Wall modeling: General wall stress and

off-wall boundary conditions will be developed for a variety of flow conditions. One

approach will be to attempt to merge various scalings that have been developed

for different flows, such as wall jets and reattachment points as well as attached

flow, into a useful package. For instance, a scaling of the skin friction in separated

regions based on the peak backflow speed UN and its distance from the wall N (Le

et al., 1997),

CSN = 21T,.I/U_ _ 4.5ReN °'92 , ReN = UNN/tJ, (5)

holds roughly in the LES of flow behind a step (§2.1), as shown in Fig. 3. Part of the

problem will be devising criteria to sense what flow regime needs to be treated from

conditions in the turbulent core flow. It is not yet clear if we must resort to this

cataloging approach for each type of flow (with some sort of continuous patching),

or if it is possible that the solution of a RANS-like set of differential equations

with sufficient physical input from the core flow will prove effective. The best

RANS model to consider is probably Durbin's VgF model (Durbin, 1991; Parneix

in this volume), which does not require ad hoc wall damping functions. We will

address the issue of interfacing this model with the LES of the core flow (cf. Carati

in this volume) and perform tests with it to determine the performance and cost

effectiveness of the approach. (3) Implementation: The degree of overlap in the
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patching procedure needs to be quantified into a useful prescription (for a given wall

model) such that the distance of overlap allows time for the signal at the boundary
to become sufficiently decorrelated with the input signal to the wall model to avoid

excessive feedback. Through an examination of DNS databases we also intend to

determine the proper grid spacing and location of the wall boundaries for which

LES can be expected to perform accurately.
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Perspectives for ensemble average LES

By D. Carati 1

1. Motivation and objectives

With the emergence of parallel computing, running several LES's simultaneously
for the same turbulent flow becomes realistic, at least for a rather coarse resolution.

We have already investigated this possibility and promising results have been ob-

tained (Carati ctal, 1996). In this report, we present several new approaches for

subgrid scale modeling that can be developed when an ensemble of LES's is known.

1.1 Coupling between LES and RANS

First, we remark that the ensemble of LES's shares some properties with the

RANS approach. Indeed, the ensemble average of quantities described by the LES's

is equivalent to the large scale property of the same quantities obtained through the

RANS. It is thus natural to investigate the possibility of coupling these methods.
One interesting procedure that has been considered in a different context (Cabot,

1996) amounts to decomposing the domain into different regions. In some of these
sub-domains, a RANS can be used if LES is too expensive. For example, the RANS

can be used in the near wall region while the ensemble of LES's would be used for

the region away from the wall (outer region). Matching conditions for the RANS

quantities are easily accessible from averages of the realizations in the outer region.

The main theoretical and practical difficulty is then to supply each LES realization

with boundary information generated from the single RANS. This task is difficult

since these boundary values are an artifact of the domain decomposition and thus
do not reflect any physical or mathematical constraints. Boundary conditions for

the LES can only be imposed through physically plausible assumptions that must

be considered as part of the modeling effort needed in the LES context.

Using RANS models in wall region has a double advantage. First, RANS are much

cheaper than LES, which are strongl3t limited by the problem of resolution close to

solid boundaries. Second, RANS represents ensemble average information and thus

requires a single simulation independent of the number of realizations in the outer

region. The hope in the proposed approach is that (i) the RANS will be improved
by the ensemble of LES's through the information passed at the boundary between

the sub-domains, and (ii) the ensemble of LES will be much faster because they will

not have to resolve the wall region. This approach has the very reasonable property

of letting the LES's focus on the outer region in which the statistical theories that

form the basis of subgrid scale modeling are believed to apply.

1 Universit6 Libre de Bruxelles, Belgium
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1.lg New models using the ensemble o.f LES's

To date, the ensemble of LES's has been used only in the determination of the

model coefficient in the context of the ensemble averaged dynamic model. However,

knowledge of an ensemble of realizations for the same flow can be used in a much

more general manner. In particular, most of the concepts used in subgrid scale

modeling originate from statistical theories of turbulence (Leslie and Quarini, 1979).
With the approach we plan to develop, the link between LES and these theories

becomes natural. In Section 2 we present some interesting uses of the ensemble of

LES's for subgrid scale modeling purposes.

2. Accomplishments

_.I The ensemble averaged dynamic model

In a study initiated during the 1996 Center for Turbulence Research Summer

Program, we have shown that a collection of LES's can be used to develop new

versions of the dynamic model based on the ensemble average. Indeed, the model

coefficient is often seen as a "universal function" that can depend on space when

the flow is not homogeneous but that should be independent of a particular real-
ization. In an ensemble of LES's this is easily achieved. Moreover, the classical

dynamic procedure relies on the existence of directions of homogeneity. When the

flow is fully inhomogeneous, the dynamic procedure can be applied, but the coef-

ficient evaluation then requires the solution of an integral equation (Ghosal et al,

1995). With the ensemble averaged dynamic model, it has been shown that the
model coefficient can be obtained simply even for fully inhomogeneous flows. Some

preliminary tests of the ensemble averaged dynamic model have been performed

and show good agreement with experimental data. Assuming that the Smagorinsky

coefficient is independent of the realization for statistically equivalent flows results

in the following model:

r lrr 6""
r,_j - 5 _k ,, _ -2CA21S"IS_'j, (1)

where C is independent of the realization index r. Here, S 0- represents the resolved
strain tensor. The dynamic procedure can be used to determine C if the usual

average over homogeneous directions is replaced by an average over the ensemble.

The error caused by using models for the subgrid scale stresses now depends on

the realization. By assuming that .for large ensembles, the Smagorinsky coefficient

is essentially constant over the scale of the test filter, we have been able to derive

an analogous expression for C as in the spatially averaged version of the dynamic

procedure:
(LijMij)

C- (MijUij)' (2)

where the brackets now represent an ensemble average. The Leonard tensor is

given a by Lii = uiu"_ - uiui and Mij = 2A[S-_ 0 - 2A[Sr[SO. Of course, the latter

a The overline notation .-7= will be used for RANS quantities and not for LES variables. In this

report, ui represents the resolved field in the LES and ui the test field in the dynamic procedure.
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assumption has to be verified a posteriori. The first conclusion we have reached

is quite encouraging. Indeed, it appears that with only 16 simultaneous LES's,

the ensemble averaged dynamic model performs as well as the volume averaged
model. Moreover, the spatial vsriability of C decreases drastically when the number

of realizations R increases. The comparison between a 5123 decaying isotropic

turbulence DNS and a 323 dynamic model LES have shown good agreement both

for the total resolved energy and for the spectra (Carati et al, 1996).

2.2 Matching conditions for RANS and LES'_

When a RANS is used in some sub-domains and LES's in others, new boundary

conditions are needed. These conditions are not imposed by the physics of the flow

but only by the domain decomposition adopted in the numerical integration. There

is thus some arbitrariness in their choice. The first and simplest question is how can

the LES's feed the liANSf Clearly, the number of boundary conditions will depend

on the RANS model and more specifically on the number of variables predicted by

the RANS. The natural assumption is then to impose equality between the RANS

quantities and the corresponding ensemble averaged LES quantities. This leads to

the following type of equalities:

_i : (u_), (3a)

,2 ((u_) _) - (u_> z. (3b)it i -_

A much more difficult problem is to determine how one single RANS can be used

to derive boundary conditions for an ensemble of LES's. Indeed, 3R boundary

conditions are needed for the u[, r = 1... R, i = 1...3. In principle, 3R RANS
quantities can be matched. In practice, however, only a few RANS quantities are

available. Typically, _i plus (maybe) -k, -_, u t2' v t2, w _2, utv _. The minimal condition
is of course:

(u[>= (4)

r _ _iVr appears to be a very poorHowever, the simplest choice of imposing u i
solution. Indeed, for a stationary channel flow, ui is likely to be zero in the spanwise
and wall-normal directions while it should be constant in the streamwise direction.

The LES's for the core flow then reduce to a thinner channel with moving planes

which is not realistic. Hence, it can be concluded that the fluctuations should be

involved in the boundary conditions for the LEB's. The solution we investigated

was obtained by matching both the average velocity and the turbulence intensities.
Of course, there is an infinity of solutions for these conditions. They can be written
asb:

f F F ot_

b We adopt the convention of implicit summation over repeated Latin indices. No summation is

implied on Greek indices.
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where the quantity h_ is arbitrary and has to be determined as part of the modeling

effort needed in LES. An equivalent formulation has also been considered:

r gr -- (gr) __21[2u,_ = _a + ' (hb)
<(g;-(g;))_>'/_

where g_, is now the arbitrary quantity. Both formulations imply (u_,) = _a and
((6u_) _) = u_ (here 6u_, = u_ - (u,_)). By coupling RANS for the wall region and
an ensemble of LES's for the core flow, the LES model has to deal with both the

subgrid scale stress and the boundary conditions. In general, hi is a function of the

velocity field and of all its derivatives hi = h[(ui, 0/ui,...). A promising choice for
h r has been considered. First, we note that the existence of a continuous boundary
provides an unambiguous decomposition of the velocity into a part normal to the

boundary u.L and a part parallel to the boundary fill (which is a 2D vector). The
choice considered so far consists in imposing the following boundary conditions for

the parallel part of the velocity:

and using continuity:

_ =o_ (8)

o_i = -vll_ (7)

as a boundary condition for u__. With this choice, the boundary condition for the
components of the parallel velocity reduces to:

i. ((_,,_ >-u,,a. (8)

The set of boundary conditions (5,7-8) must now be tested in simple cases.

_.3 Proposals for new subgrid scale models

As already discussed, the additional information provided by the ensemble of LES

can be used for constructing new eddy viscosity models. However, it is known that

the eddy viscosity gives a very simplified picture of the subgrid scale stress. For that

reason, it is also interesting to investigate the possibility of modifying the structure

of the subgrid scale model by using some quantities that are directly accessible from
the ensemble of LES's.

2.3.1 Model based on the fluctuating strain tensor

The first model we propose is obtained by subtracting the mean strain:

_ = -,_( s,5 -(ss)) ----_ _sf,. (9)

This formulation has some nice properties. The average dissipation is given by

c = (.v6ss_ss)+ _o(Si_.si% (lo)
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and thus the turbulent dissipation only originates from the fluctuating part of the
strain tensor. The mean part only contributes to the molecular dissipation. This

property ensures that the model will not produce dissipation in a laminar region.

In addition, while this model is dissipative on average (provided the eddy viscosity

is positive), individual realizations can have negative dissipation thus representing

the inverse transfers of energy from the small unresolved scales to the large ones

(backscatter). It is generally believed that backscatter originates from fluctuation

phenomena an the subgrid scale, and representation of this effect through fluctua-

tions in the strain tensor is thus very reasonable.

_.3._ Anisotropic model

Although isotropic turbulence has been studied in great detail for many years, the

presence of some anisotropy is almost universal in practical instances of turbulent

flow. However, anisotropy usually originates from complex interactions between

flow direction, solid boundaries, and external constraints like pressure gradient or

global rotation. It is thus quite difficult to predict a priori the main direction of
anisotropy. In the context of statistical averaged LES, we have access at any instant

to mean quantities that will display the anisotropic structure of the turbulence. On

the contrary, when only one single LES is accessible, the direction of anisotropy
can only be discovered after some averaging in time if there is no direction of

homogeneity. A model that would directly take advantage of the ensemble of LES
could be:

kTi S/i, (11)

where the factor p plays the role of an eddy viscosity but through an anisotropic

relation between the subgrid scale stress and the strain tensor. The tensor 7ij should

be a measure of the anisotropy. It can be constructed with the velocity fluctuations:

"y,i= (12)

This model reduces to the classical eddy viscosity model for isotropic turbulence

(Tii = '50)" Moreover, the sign of the dissipation depends only on the sign of #

since the product of r_ and the strain tensor is given by

-roSi j = pSijTi_TjaSkl (13)

whose sign only depends on the sign of #. Moreover, if there is no turbulence in one

direction (_ua = 0), the model has the property that the component via = raj = 0.

This is an expected property that is missed by the Smagorinsky model, which
dissipates even in the laminar regime.

3. Conclusions and future work

We conclude by stressing that the use of an ensemble of LES's is not per se

much more expensive than the use of a single realization. Indeed, let us consider a
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stationary LES and denote by tt the transient period between the beginning of the

simulation and the time at which the turbulence becomes fully developed. Let us
also denote by ts the time (beyond tt) required to converge the statistics. Then, the

CPU time required for obtaining converged statistics with a single LES is tt + ts.

With an ensemble of realizations, statistics are accumulated over both the ensemble

and time. Thus, for equivalent sample, the ensemble only needs to be advanced in

time by the amount ts/R. The total CPU cost for the ensemble is thus R(tt +to�R),
which amounts in an overhead of (R - 1)Q over a single realization. If the ratio

between the transient phase and the time needed to converge statistics is small,

then the additional cost will be acceptable. Moreover, if the LES is not stationary

and if there are no homogeneous directions, the ensemble average approach would

seem to be the only way to obtain statistics. Finally, a wall model using RANS
concepts would greatly reduce the cost of each LES in the ensemble.

Future work must now be devoted to the numerical implementation of the idea

developed in this report. A first and very simple test of the matching conditions

can be obtained by running an LES in the core flow of a channel with the boundary
t2conditions described in section 2.2 in which the quantities u i are obtained from

experimental data. In that case, the LES is fed with "exact" RANS quantities, and

the test will clearly determine if the boundary conditions performs reasonably well.

The channel flow can also be used for testing the new models proposed in section
2.3.
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Anisotropic grid-based formulas

for subgrid-scale models

By G.-H. Cottet x AND A. A. Wray

1. Motivations and objectives

Anisotropic subgrid-scale models have long been recognized as a natural alterna-

tive to the isotropic Smagorinsky model. A priori tests, based either on experiments

(Liu et al. 1994) or on DNS data have often shown that these models have much

better correlations than the Smagorinsky model. However their efficacy in large

eddy simulations has so far been limited by two factors. First, these models are

in general viewed, through Taylor expansions, as a way to compute the subgrid-

scale contribution of the Leonard term. They are used with the coefficient values

which result from these Taylor expansions and thus depend on the form of the filter

function. Secondly, anisotropic models are based on tensor forms of the turbulent

viscosity and therefore may produce backscatter as well as dissipation. The clipping

techniques, which are proposed (Liu et aI. 1994, Vreman e$ al. 1997) to overcome

the destabilizing effects of backscatter, are based on energy balances but ignore

that dissipation and backscatter in general coexist at every point along different

strain directions of the flow. They thus lead to models which are not dissipative

enough, which explains why they are often complemented by Smagorinsky terms in

so-called mixed models. These formulations, however, are not able to retain the po-

tential gain offered by the anisotropy of the original model, in particular in laminar

or wall-bounded flows.

Our goal here is twofold. We first derive formulas based on the quantities com-

puted on the grid that facilitate the implementation of the anistropic model in

any code. By distinguishing between backscatter and dissipation directions in the

flow, we also present strictly dissipative formulas which lead to stable and truly

anisotropic schemes.

2. Accomplishments

_.I The model

Our starting point will be the following model for the residual shear stresses,

sometimes referred to as the self-similarity model (Liu et al. 1994) or the gradient

model (Vreman et al. 1997):

rij _ CA2DikUDik_ (1)

where Dik_ = _ and A is the filter width. Throughout the paper, we will use
0xh

the convention of summation of repeated indices.

1 Permanent address: LMC-IMAG, Universitfi Joseph Fourier, BP 53 Grenoble C_lex 9, France



114 G.-H. Cottet _ A. A. Wray

2.1.1 Integral approziraation and grid formulas

Our derivation is based on a numerical filter function _ satisfying the following
moment conditions:

f xkxt¢(x) = 6kt, k, = 1,2,3 (2)dx I

where xk denote the components of x and 6_t is the Kronecker symbol. Such a
filter can be easily constructed by proper rescaling of any positive function satis-

fying symmetry properties (e.g. functions with spherical symmetry or functions

constructed through tensor product of one-dimensional even functions).
We first write (here and in the sequel we drop the overbar notation for the resolved

fields)

A2Diku(x)Djku(x) = A-s / Dij, u(x)Dj,u(x)(yk - xk)(yt - x,)((_-_) dy (3)

where we recall that the summation of repeated indices is implied. In the above

formula, A is the filter width, which for the time being is assumed to be constant.

By Taylor expansions of ul and u i around x, this yields

A2 Dik u(x)Dik u(x) =

(4)

Since ultimately it is the divergence of _'i1 that we need to model in order to solve

the filtered Navier-Stokes equations, we take the divergence of (4) to obtain, after

cancellation of the term involving the divergence of u:

0j [Diku(x)Djku(x)] __ Ai + Bi

where we used the notation Oj for OlOx I and

y--xAi = -A-3 [uj(y) - ui(x)]Oju,(x)¢(--_)dy

B, = -Zx-' J[ui(y)- -

f

It is readily seen that Ai are convective terms: if one sets _ = f _(y) dy and

fl(x) = _)_A31/ u(Y)¢(_ --_)dy

then Ai can be rewritten as (fi - u)Vui. It thus does not contribute to the energy

balance. Since the goal of SGS models is to model the transfer of energy between
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large and small scales, we will only be interested in Bi. Hence the SGS model can

be expressed as

__ -CA-'/[uj(y)- u)(x)][ui(y)- u,(x)]Oj((_-_)dy (5)Ojri,

*.I.* Viscous scales and grid refincmenf

The above derivation assumes an isotropic filter _. In practice, it is natural to use

a function which matches the computational grid. For a variable grid such as those

generally used for wall-bounded flows, one can then expect that grid refinement in
specific directions will translate into variable viscous length scales in the subgrid-

scale model. To be more specific let us assume that the filter _ is built from a

unique one-dimensional shape p in all 3 directions and that A1 (xl), A2(X2 ), Aa(x3 )

are the local grid sizes in the 3 directions. The natural generalization of formulas

(4) and (5) to this case is given by

rij(x) _ w(x-----) [us(y ) - uj(x)l[ui(y) - ui(x)]_(x,y)dy

C 1 fw(x) Ai(xi) [us(y ) - uj(x)][u_(y) - u,(x)],Xi(x,y) dy

where w(x) = AI(xl)A2(x2)A3(x3) is the volume of the cell centered at x and

,Zl--Yl, ,x2--Y2 x__a__y3)
¢(x,y) = p(&--_-_-)p(-_)) )p(As(x) "

p,(xl-yl x2-y2, ,xa-Ya l(x,y) = )"

and similar formulas for A2, ,_a. It can be shown (see Cottet 1997 for details) by

using a coordinate mapping between the mesh and a uniform isotropic grid that

these formulas correspond to the differential subgrid-scale model

vii " Ak(x)2DikuDjku

In other words, the eddy-viscosity length scale is given by the grid spacing in the

corresponding direction. In near wall regions, when grid refinement is used, this

produces an additional damping in the SGS dissipation which we believe is desir-

able. Note that the traditional derivation of subgrid-scale models does not apply

to varying size filters, making the use of (1) questionable.

_.1.3 Anisofropic clipping

The total subgrid-scale dissipation :D associated to the model (5) is obtained by

multiplying this formula by u(x) and integrating over x. Writing u(x) = _[u(x) +

u(y)] + ½[u(x) - u(y)] and using the symmetry of _, we are left with

C -4/ y-x29 = _-A [u(y) - u(x)] • V((---_)lu(y) - u(x)l 2 dxdy
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FIGURE 1. Finite-difference stencil of the subgrid-scale model in the case of a

uniform grid with a radial hat filter, aT/A, aE/A,.., denote the weights of the

corresponding grid points.

This formula gives a way to measure the local dissipation at a given point x as well

by restricting the integral over y only. It also enables us to formulate a strictly

dissipative model as follows

(
t

A -4 -- [u(x) - u(y)]. V¢(-_-_)] i [u(x)- u(y)]dy
d ._ I+

(6)

where a+ = max(0, a). Unlike the traditional clipping strategies, which would

consist in replacing Ojrij by zero whenever the global energy budget would have
the wrong sign, this technique respects the anisotropy of the original formula in

the sense that it allows to dissipate in one or more directions while controlling the

backscatter which would arise in the other directions. A clipping technique can be

written along the same lines to make sure that when combining the subgrid-scale
model with the effect of the molecular viscosity the method is strictly dissipative.

2.2 Large eddy _imulation8

2.2.1 Isotropic turbulence

We first examine the validity of our model in simulations of decaying isotropic

turbulence. All calculations were done with a spectral code in a periodic box with

full dealiasing. The subgrid-scale models is therefore implemented on a uniform

grid on which velocity values are classically obtained through FFT.

We have considered two possible choices for the numerical filter _: a radial func-

tion _1(x) = af(Ixl) and a tensor product function ¢2(x) =/3f(xl )f(x2)f(x3 ). The

function f is a piecewise quadratic spline with support in [-1.5, +1.5], and a,/3
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FIGURE 3. Enstrophy decay for DNS and LES with Smagorinsky and anisotropic

models. See Fig. 2 for symbol legend.
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FIGURE 6. Subgrid-scale dissipation for the dynamic model and anistropic models.

: Dynamic model; ........ : Unclipped C=.25; .... : Clipped C=.075.

are 2 normalization constants needed to enforce (2). As a result, the stencil corre-
sponding to the implementation of (5) involves 7 points in the first case and 27 in

the second one. Figure 1 sketches the particular form of the stencil in the first case.
We have compared the results of LES on a 323 grid using the clipped anisotropic

model (6), as well as the Smagorinsky model, with a 5123 DNS. The coefficients
of the various models have all been tuned to yield an energy decay which matches

the DNS results (Fig. 2). The enstrophy decay curves in Fig. 3 show that the

anisotropic models behave better than the Smagorinsky model up to time T ,-_ 5.

This is confirmed by the energy spectra showed in Fig. 4. Past this time, all models

are too dissipative in the high modes, with slightly better results for the anisotropic

model (Fig. 5). The particular implementation chosen for the anisotropic model

(isotropic vs tensor-product filter form) does not seem to significantly affect the
results.

2._.2 Channel calculations

This case is more challenging as it is well known that the Smagorinsky model is

unable in this geometry to give good results in the absence of ad hoc damping at
the walls or dynamic coefficient calculation.

We show comparisons between the anisotropic model and the so-called global
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FIGURE 7. Turbulence intensities in wall coordinates; top curves: streamwise

velocity, middle curves: normal velocity, bottom curves: spanwise velocity. Symbols

same as Fig. 6.

dynamic model (Germano et al. 1991), which can considered as the best available

model for this geometry. Our tests are done in the context of a Tchebytchev-Fourier

collocation code (Kim et aL 1987). In this numerical scheme, the Crank-Nicolson
time-advancing scheme is used for diffusion in the wall normal direction together

with a third order Runge-Kutta method to advance the nonlinear convection and

SGS terms. Periodic boundary conditions are assumed in the streamwise and span-

wise directions and no-slip conditions at the walls located at y = +1. Dealiasing is

performed in the periodic directions, and the pressure is updated at each iteration

to maintain a constant momentum throughout the calculation. We have focused on
the case of a Reynolds number of ."er = 1,030 based on the shear velocity, which

corresponds to a Reynolds number of about 25,000 based on the centerline velocity
and the channel half-width.

The anistropic model has been implemented with the tensor-product filter _2.

Note that the grid refinement given by the Tchebytchev collocation points in the

wall normal direction implies a variable eddy-viscosity length scale in this direction

as explained in 2.1.2. Two cases have been considered: in the first one the method
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(5) is used without any clipping and a coefficient C = 0.25, while in the second a

method similar to (6) is used in order to prevent the backscatter from overwhelming

the molecular dissipation. In this latter case, a smaller value of the coefficient was

chosen (C = 0.075). Figure 6 shows the subgrid-scale dissipation averaged on planes
parallel to the walls. The similarity of the profiles obtained by the anisotropic

models and the dynamic model is striking and confirms that the anisotropic model

has a much better behavior in near wall regions than the Smagorinsky model. This

observation is confirmed by the results obtained for the velocity fluctuations in Fig. 7

and the shear stresses in Fig. 8. We refer to (Cottet 1997) for more numerical results
for this case.

3. Future plans

Tests of the anisotropic model have shown the superiority of this model over the

Smagorinsky model. This superiority, which can be expected from the a priori tests
that can be found in the literature, has been confirmed in LES using the present

method. The emcacy of the model has gained from its ability to incorporate a truly

anistropic backscatter control. The performance of the model both in isotropic and

wall-bounded flows encourage trying it for other flows such as shear layers or jets.
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Another direction of research is the implementation of a dynamic procedure to

compute the model coefficient, along the lines suggested by Cottet (1997). On the

basis of the present results, one can expect that this technique should not produce

highly oscillatory values for the coefficient. In other words, the anisotropic model

should be better conditioned than the Smagorinsky model for a dynamic procedure,

in particular when no averaging over homogeneous directions can be used to stabilize
it.
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Some modeling requirements for
wall models in large eddy simulation

By Jeffrey S. Baggett

1. Motivation and objectives

Large eddy simulation (LES) works when the energy-containing eddies of the flow

are representable on the numerical grid. Unfortunately, in turbulent wail-bounded

flows, outside the viscous sub-layer, these eddies can scale as the distance from the

wall. As the Reynolds number increases and the viscous sub-layer shrinks, the num-

ber of grid points required to resolve the near-wail eddies increases dramatically.

This near-wall resolutiou requirement is currently the severest bottleneck in apply-

ing LES to flows of practical interest (Chapman 1979, see also Baggett, Jim6nez,

and Kravchenko in this volume).

Deardorff (1970), in the first simulation of turbulent channel flow, was the first to

use a wall model to avoid resolving the near-wail region in an LES. Computational

resources were limited, 6720 grid points were the maximum number that would fit

in core memory, and the first near-wail grid point had to be located well outside the

viscous sub-layer, thus rendering the computed wall shear stresses highly inaccurate.

To remedy this deficiency Deardorff constrained the wall-normal second derivatives

of the horizontal velocities at the first off-wall grid point in such a way that the

logarithmic law of the wall was satisfied in the mean. Effectively, an instantaneous

logarithmic law was used to parameterize the wall shear stresses in terms of the

horizontal velocities at the first off-wail grid point.

Since 1970, a number of other wall models have been proposed for use in LES of

attached flows. Nearly all of them estimate the wall shear stresses which are used

as boundary conditions for the core flow LES (along with zero wail-normal velocity

at the wall). As of this writing, there are essentially three kinds of wall models that

have been employed in LES.

The first and most widely used kind of wall model is an equilibrium stress model.

The logarithmic law of the wail is applied locally to relate the horizontal velocities

at some point above the wall to the wall shear stresses. As originally proposed

by Schumann (1975), deviations from the mean wall shear stress are assumed to

be linearly correlated to deviations from the mean horizontal velocities. This as-

sumption yields an algebraic, possibly nonlinear, relation between the instantaneous

wall shear stress and the off-wall horizontal velocity. A number of variations and

improvements on this scheme have been proposed (see Piomelli, et al. 1989 for a

review), but they are all based on an equilibrium stress assumption and their range

is, therefore, limited.

A second kind of model, which has much in common with domain decomposi-

tion techniques, uses the three-dimensional boundary layer equations with a wall-

damped eddy viscosity to represent the near wall region (Cabot 1995, Baiaras et
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al. 1996). The standard LES equations are solved on a coarse grid, with the first

off-wall grid point located outside the buffer layer, using wall shear stress and zero

transpiration boundary conditions. The wall shear stresses are provided by integrat-

ing the three-dimensional boundary layer equations on a grid embedded between

the wall and the first off-wall LES grid point. The boundary conditions used for

the boundary layer equations are no-slip at the wall, and the velocities are matched

to the LES velocities at the first LES off-wall grid point. While the boundary layer
equations are cheaper to solve numerically than the LES equations, this approach is

still expensive since the grid required in the near-wall region for the boundary layer

equations is similar to that required if the original LES were simply to resolve the

near-wall region. Furthermore, this approach does not make sense in flows which do

not exhibit boundary layers, e.g. separated flows. However, the general idea of ap-

plying a domain decomposition strategy and using different constitutive equations

in near-wall domains may prove valuable for the general wall modeling problem.

The two kinds of wall models mentioned above apply to a limited class of flows;

however, a third approach has been developed which, in principle, can be applied to
develop wall models for arbitrary flows. In this approach linear stochastic estimation

is used to find the best least squares estimate of the wall stresses given the LES

velocities on some plane, or planes, parallel to the wall (Bagwell 1993, Bagwell

1994). Again, the estimated wall shear stresses are used as boundary conditions for

the LES. Bagwell successfully employed the resulting wall model in LES of channel

flow at R¢_ = 180, but attempts to re-scale the wall model to apply it in an LES

of channel flow at Re, = 640 met with limited success. While this approach is a

general mathematical approach and does not rely on the underlying physics, the
two-point correlation tensor of the flow must be known to form the linear stochastic
estimation coefficients.

None of the existing wall models seems to be a great candidate for use in LES

of complex flows (see Cabot in this volume). Algebraic wall models based on equi-

librium conditions are too simple to deal with complex flows, and solving three-

dimensional boundary layer equations is expensive and also not easily extended to

non-attached flows. One of the goals of the current study is to determine what in-

formation is needed from the near-wall region for accurate LES of the core flow. In
other words, we would like to establish a target for the further development of wall

models. Once a well-defined target is established, it will be the object of further

studies to inquire as to whether or not simpler (than full Navier-Stokes or other

three-dimensional PDE's) systems, such as low-dimensional dynamical systems, are

capable of producing the necessary near-wall information.

In this preliminary study we seek to answer the following question: What infor-
mation does the core flow need from the near-wall region; that is, what does a wall

model have to provide?

2. Accomplishments

To gain some insight into the questions asked above we have conducted some

experiments using a coarse grid direct numerical simulation (DNS) of turbulent
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channel flow. The DNS was performed using a second order finite difference code

(Morinishi 1995). The grid is staggered and stretched in the wall-normal direction

using a hyperbolic tangent mapping. Time is advanced using a three-stage Runge

Kutta, fractional step scheme in which the wall-normal viscous terms are treated

implicitly. The flow domain is 27r, 2_r/3, and 2 in the streamwise (z), spanwise (z),

and wall-normal (y) directions, respectively. The domain is discretized by 32, 32,
and 33 grid volumes in the streamwise, spanwise, and wall-normal directions. The

Reynolds number, Rc,, based on the channel half-width, h, and the friction velocity,
u,-, is 200. Unless otherwise noted, all simulations were performed with a constant

pressure gradient in the streamwise direction.

Our experimental strategy will begin with a fully developed field as an initial

condition and then do a simulation while saving the velocity and/or velocity gradient

data on some parallel planes above the wall. The time series of boundary data, or

modifications of the time series, is then used to provide boundary conditions to

conduct simulations of the flow between the designated boundary plane and the far

wall. By making selective modifications to the the time series of boundary data, we

can gain insight into what information the near-wall flow must provide for accurate
simulation of the core flow.

A possible objection to this study is that a simulation of turbulent channel flow
at Re,. = 200 using only 323 grid points is hardly a DNS, and since we have not

included an SGS model it is not properly an LES either. However, the resolution is

similar to that employed in an LES, and the numerical scheme has enough artificial

dissipation that the reference simulation gives remarkably good results. Our goal

is simply to achieve the same core flow results with the modified boundary data
simulations as in the reference simulation. An SGS model will have to be included

in further studies, but for this preliminary study we chose to eliminate that possible

source of uncertainty.

2.1 Choice of off-wall boundary conditions

There are many possible choices for supplying boundary conditions to the simu-

lation at some height above the wall. Two possibilities are:

(1) Diriehlet: velocities are specified where they are demanded on the staggered

grid. In our case, we specify

u(x,y + _-, 25, z,t),v(x,y + ,,_ 30, z,t),w(x,y + ,_ 25, z,t),

from the reference time series. This fixes the transpiration velocity at the com-

putational boundary and also guarantees the right correlations between u and v

at the computational boundary. Note that this does not fix the value of (u'v') at

the computational boundary since that is determined by interpolating values of

u and v on the staggered grid, and only half of those interpolated values of u are
fixed by the boundary condition.

(2) Mixed: transpiration velocity and wall-normal gradients of the horizontal veloc-

ities are specified on the plane y+ _ 30 :

Ou . + Ow . +
 (x,u 30,=,t), v(x,y+ 30,z,t), b- u(x,y 30,z,t).



126 J. S. Baggett

This fixes the viscous stresses and the transpiration velocity at the plane y+ _ 30.

Morinishi's DNS code was modified to take either form of boundary condition,

and a reference time series of 12,000 time steps, corresponding to 60h/u_. time

units, of boundary data was saved by integrating a fully developed field. As in

all the subsequent simulations, the boundary data time series was used to provide

boundary conditions for a simulation with one wall removed from the computation.

All of the simulations with off-wall boundary data are integrated for the length of

the time series, 60h/u_., with statistics collected over the last 30h/u_. time units.

First, to test the application of the two types of off-wall boundary conditions,

simulations were conducted using the same initial condition as used to generate the

time series. The simulation employing the Dirichlet off-wall boundary conditions

produced mean flow and second order statistics which were indistinguishable from

the reference simulation. This is hardly surprising since no changes were made

to the numerical scheme to accommodate the Dirichlet boundary conditions. Any

differences in the simulated flow with off-wall boundary conditions and the reference

simulations, when using the same initial condition, should be due to round-off errors.

The mixed off-wall boundary conditions did not work as well. The wall-normal

gradients of the horizontal velocities are fixed at the computational boundary,

y+ _ 30, but the horizontal velocities themselves are not fixed. Eventually the

streamwise velocity, u, "slips" and is no longer correlated properly with the wall-

normal velocity, v, which is fixed by the time series. This leads to an under-

prediction of the turbulent stresses near the computational boundary, which in turn

causes the mean flow to accelerate. Shown in Fig. 1 are statistics accumulated over

the last 30h/u_. time units of a simulation with mixed off-wall boundary conditions

conducted over the length of the time series, 60h/u_. time units. Bagwell (1994) had

similar difficulties in attempting to use a wall model to provide the same off-wall

mixed boundary conditions in turbulent channel flow.

The Dirichlet off-wall boundary conditions appear to work better. To test their

robustness, another simulation was performed with the same time series, but using

an initial field completely different than the one used to generate the time series.

Initially, the boundary data and the start field are incompatible, and this leads to

an under-prediction of the turbulent stresses near the computational boundary. In

the absence of enough opposing force, due to the constant pressure gradient, the

flow accelerates initially and then slowly, over viscous time scales, settles to the

expected mean flow. To accelerate convergence of the statistics, a pressure gradient

control scheme was used in the initial 3Oh�u,. time units to drive the flow towards

one with the expected mass flux. This control scheme was then turned off, and the

statistics, shown in Fig. 2, are accumulated over the last 30h/u_. time units. There

are some small discrepancies in the second order statistics which may be statistical.

The fact that the simulation, with Dirichlet off-wall boundary conditions and an

inconsistent start field, converges at all suggests that the core flow is responding

passively to events in the near-wall region. Perhaps this is not surprising since

the main region of turbulent production occurs below the point where the off-

wall boundary condition is supplied to the flow. The core flow may be able to be
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simulated by providing a time series of good turbulence data on some plane between

the core flow and the region of turbulence production, but it remains to be seen

if this boundary data can be provided by a cheap wall model. In any case, the

Dirichlet off-wall boundary condition is extremely robust, and we will use it below

to study the information flux from near-wall region to the core flow.

_.2 Mildly scrambled Diriehlet data

Providing a good time series of velocity boundary data to the core flow is suffi-
cient to conduct an accurate simulation of just the core flow region. To begin to

understand just what structural information has to be incorporated into the velocity

boundary data, we make various modifications to the boundary data in this section
and the next.

One particularly gentle way to perturb the structure of the boundary data is to

randomize the phases of the Fourier components. If the same random phase angle

is applied to all three velocity components for each wavenumber vector, then the

horizontal spectra and cospectra are not perturbed. The transformation is

= ei0,

where fi and fis denote the Fourier coefficients of the original and scrambled data,

respectively. 0j is a random phase angle chosen uniformly from the interval [-Tr, _r).

Since the boundary data is real, the relation 0j = -0_j must be satisfied. This
transformation has the further advantage that the continuity relation is not affected:

8

k,a;(y) + + = 0.

Thus the horizontal spectra of Ov/Oy are not effected at the computational bound-

ary, that is, the mass flux through the boundary plane maintains much of its original

structure. Furthermore, the random phase angles are constant with respect to time,

so the boundary data maintains its original time scales. Even though the original
structure of the Dirichlet boundary is lost, in particular all of the moments of order

greater than two are perturbed, the core flow is still simulated well (see Fig. 3).
This result suggests that the core flow can be simulated without complete struc-

tural information from the near-wall region. However, as we shall see in the next

section, some structural information is necessary.

_.3 Severely scrambled Dirichlet da_a

We have just shown that the core flow simulation can tolerate some loss of struc-

tural information from the near-wall region. Here, we will check to see if it is
sufficient to supply boundary data information which has the correct second or-

der statistics and time scales, but for which the turbulence structure is severely

perturbed.

One way to achieve such an effect is to randomize the phases of the Fourier

components, but, as opposed to the method applied in the previous section, the
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random phase angle is chosen independently for each of the velocity components for
each wavenumber vector. That is,

( (y), ) = (¢oi at(y), Cq Cq  t(y) ).

The Fourier coefficients fit are those of the original boundary data, and fly are the

those of an intermediate set of boundary data. The phase angles 0_, i = 1, 2, 3 are

chosen uniformly and independently from the interval [-_', 7r), and 6i = -0_t so
that the boundary data remains real. The relative phase angles between the Fourier

coefficients for the u r and v r boundary data are changed by this transformation so

that ((u r - (u_))v _) is also changed. But, by following the technique used by Lee et
al. (1992) to generate random inflow data for a turbulent simulation, we can rotate

the principal axes of u r and v _ to obtain the correct correlation for the scrambled

boundary data. Finally, the scrambled boundary data are given by:

and

us = ¢os(¢)u + sin( )v

= - sin(¢)u" + cos(¢)v',

W s = tO r.

Details on solving for the rotation angle ¢ are given in (Lee et al. 1992).

The scrambled boundary data have the correct mean values and second order

statistics, but the spectra and cospectra are perturbed. Furthermore the structure

of Ov/Oy is strongly perturbed through the continuity relation mentioned in the

previous section. The random phase angles are constant with respect to time, so
the scrambled boundary data still has the correct time scales, but the boundary

data are effectively random numbers with the correct second order statistics, w e

has the same horizontal spectra as the original boundary data, but the spectra of

u s and v s are modified by rotation of their principal axes as are the cospectra.

Again, the simulation was run over 60h/u_ time units with statistics accumulated

over the last 30h/u_ time units. As can be seen in Fig. 4, the mean flow and second

order statistics develop a boundary layer type character near the computational

boundary. This indicates that simply providing a time series of boundary data

with the correct second order statistics, approximately the correct spectra, and the
correct time scales is insufficient for the accurate simulation of the core flow.

3. Conclusions

Off-wail boundary conditions can be used for simulation of just the core region

of a turbulent channel flow. Our results indicate that supplying velocity bound-

ary data may be more robust than attempting to fix the wall-normal gradients of

the horizontal velocities as well as the transpiration velocity through the computa-
tional boundary plane. This may not be surprising since outside of the near-wail

viscous sub-layer the total stress is dominated by the contribution from the turbu-
lent stresses. The off-wall Dirichlet boundary conditions fix the correlation between
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u and v at the boundary, whereas the mixed off-wall boundary conditions fix only

the viscous stresses at the computational boundary.

These preliminary results also suggest that the off-wall velocity boundary condi-

tions must contain at least some turbulence structure. In particular, the simulations

performed with the "mildly" scrambled velocity boundary conditions suggests that

boundary data with the correct spectra and cospectra may be sufficient for accurate

simulation of the core flow. Correct estimation of moments greater than second or-

der is probably not necessary. However, simply supplying the correct statistics, up

to second order, is not sufficient -- some further structural information is necessary.

Thus, even if the second order statistics of the near-wall region are known, it may

be difficult to use this information to extrapolate boundary conditions from the core

flow as suggested by Carati (in this volume).
On a final note, to see what may happen if structural information about the

near-wall region is not incorporated into the wall model, consider the large-eddy

simulations of Mason and Callen (1986). They attempted to simulate high Reynolds
number turbulent channel flow by forcing the flow to fit a local logarithmic law

at the wall along with zero wall-normal transpiration. Their boundary condition

guarantees the right total stress in the mean but is incapable of carrying the right

turbulence structure. Effectively, they completely excised the region of turbulence

production from their computation and used a wall model without any capacity to

correct this deficiency. They found that they were unable to simulate an effective

logarithmic region in their calculations. This problem was later rectified by Mason

and Thomson (1992) by including a stochastic backscatter term which probably

helped compensate for the missing production mechanism. It is clear that the core
flow needs to see at least some of the turbulence structure produced in the near-

wall region. It remains to be seen if cheap wall models can provide the necessary
turbulence structure to the core flow.
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Numerical simulation of 3D turbulent

boundary layers using the V2F model

By S. Parneix AND P. Durbin

1. Motivation and objectives

A 3-D turbulent boundary layer (3DTBL) is usually generated by a change in the

geometry, e.g. by a turning channel or an appendage mounted on a channel wall.

The resulting spanwise pressure gradient, Op/Oz, skews the incoming 2-D boundary

layer U(y), creating an extra strain rate OW/Oy. The near-wall part of the mean
flow, with low momentum, is expected to respond more rapidly to this new pressure

gradient than the high momentum free-stream flow. Consequently, variation of the

flow turning angle in the normal direction y is expected.
Experimental databases (e.g. ()lcmen & Simpson 1995, Webster et al. 1996)

have been used to evaluate the ability of classical linear eddy viscosity models to

reproduce a 3DTBL. In all cases, it was observed that a non-zero angle can exist
between the direction of the flow gradient and of the shear-stress while, with the

isotropic eddy viscosity hypothesis, this angle is exactly zero. This has led to

a sentiment that more sophisticated turbulence models (Second Moment Closure,

non-linear eddy viscosity) are needed to better predict 3-D 'complex' configurations.

However, the error associated with prescribing identical directions of Reynolds stress

and mean rate of strain may be not crucial in the prediction of the mean flow: at

an operational level, the Reynolds stresses are not used, only the eddy-viscosity. In

fact, turbulent shear stresses have been found to be smaller than pressure forces in

the outer part of the 3-D boundary layer (Johnston & Flack 1996). Moreover, the

inner layer of a 3DTBL is a collateral region, i.e. the velocity vectors are coplanar
with the wall shear stress direction (Goldberg & Reshotko 1984). If a suitable near-

wall turbulence model is being used, these observations give hope that accurate

predictions of 3-D turbulent flows can be obtained while keeping the numerically

amenable, isotropic eddy viscosity hypothesis.

The V2F model was introduced by Durbin (1991) as a restriction of a full Second

Moment Closure model (Durbin 1993). It is able to reproduce both the damping of

turbulence transport near solid boundaries and the well-known near-wall non-local

effects of pressure-deformation fluctuations. Its main advantage is its validity and

accuracy up to the wall without using either wall functions or damping functions.
This model has been implemented in NASA's INS3D (Rogers & Kwak 1990) and

used herein for computing two 3-D flows. The first is the flow over a swept bump

mounted on the floor of a wind tunnel (Webster et al. 1996). This case involves

both curvature and cross-flow effects. For this case, a new coefficient in the c-

model equation, which gets rid of the impractical and 'ill-behaved' wall distance,

has been compared with the initial version (Durbin 1995) and with the experiment.

Then, the model has been directly applied to the more complex, 3-D flow around
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a wall-mounted appendage (Devenport & Simpson 1990, (]lcmen & Simpson 1995,
(Dlcmen & Simpson 1997). This well-documented flow involves a 3DTBL, massive

separation, and secondary flow with a horseshoe vortex around the appendage.

2. Accomplishments

2.1 Flow over a swept bump

2.1.1 Configuration

The experimental configuration is presented in Fig. 1. The bump consists of a

short concave section, a longer convex section, and another short concave section.

The Reynolds number based on the maximum inlet velocity and the bump chord

c (cf. Fig. 1) is about 323,000. The upstream boundary layer begins at a swept

suction slot. It is a fully developed boundary layer with a momentum thickness

Reynolds number of 3,800 at one-half chord upstream of the onset of curvature.

Since channel side wall effects are negligible in the experiment, the flow is homoge-

neous in the direction parallel to the line of the bump. This allows a 2-dimensional,

3-component computation to be done. In a frame with the a%axis perpendicular
to the bump and the S-axis parallel to it, the ;_-momentum equation is simply the

convection diffusion equation:

The inlet condition is if" = Usin45 °, /.) = Ucos45 °. The experimental and com-

putational results are presented in the wind-tunnel x - y frame. In this frame, W

is equal to 0 at the inlet.

.....':..:.... .........
"..,.. "<(_B/U//M/PY//////_/_,,-2Dcomputational

2DTBL ""-... _'////////./_/_)h plane

"% .s.........................
c/2 c

FIGURE 1. Top view of the wall mounted bump.

Inlet profiles of k, v 2, and ¢ were obtained from a separate computation of a

flat plate boundary layer. The entire channel height is taken into account in all
the simulations. These were performed using a general geometry, finite-difference

code developed by Rogers & Kwak (1990) to which the V_F model has been added.

The spatial discretization scheme is third-order, upwind biased for convection terms
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and second-order, central for diffusion terms. A fine stretched, curvilinear grid of

150 x 120 nodes was used with a high resolution near solid boundaries and around

the bump onset and exit. A mesh independency study was performed by dividing

the mesh by a factor of 2 in all directions; the results on both mean velocity and
skin friction were little changed.

2.1.2 Results

Although the minimum distance to the wall, d, was not used for evaluating

the damping of the normal velocity fluctuations at the wall, it was present as

an interpolation parameter in Durbin (1995). The motivation was simply to ob-

tain suitable values of C _ in the e-equation for both turbulent boundary lay-s1
C' C Iers ( ,_ = 1.55) and plane mixing layers ( ,, = 1.3): to this end, the formula

C_, = 1.3 + 0.25/[1 + (d/2g)2] 4 was used. Here g is a turbulent length scale (see

Durbin 1995). The distance to the wall is often criticized for being 'ill-behaved' in

complex, 3-D geometries. It is also impractical to use in multizone computations

or in unsteady calculations with moving surfaces. In the present formulation, d is

replaced by the structural parameter k/v 2, which has similar properties; in partic-

ular, it provides a means to increase the production of ¢ near solid boundaries. It

does this by the physically attractive route of relating C_ 1 to the anisotropy of the

turbulent velocity fluctuations. The specific formula is C_1 = C_t(1 + al CkF-i).

This is the only change in the equations from those in Durbin (1995). Since this

one formula is different, the value of the empirical coefficients had to be recali-

brated. For this purpose, the same test-cases as for the initial version were used (a

zero-pressure gradient 2DTBL and a low-Reynolds number fully-developed channel

flow). The differences between the two versions are indicated below:

For the initial version (Durbin 1995): C_, = 1.3 + 0.25/[1 + (d/2g)2] 4

Cj, = 0.19, eL _- 0.3, C, = 70.0 (2)

- For the present version: C'_ = 1.4(1 + 0.045 k_)

Cj, = 0.22, CL = 0.25, C_ = 85.0 (3)

The length scale formula actually involves the product CLC_, which is 21 in both
(2) and (3). So the recalibration is relatively minor.

These two versions have been compared on the configuration of the swept bump.

The pressure and friction coefficients (Figs. 2 and 3) as well as mean flow profiles

(not shown here) obtained by both versions are very similar to each other. It
should be added that the new version, i.e. with k/v 2, has been checked to give

similar results, without affecting the numerical stability, in most of the previous two-

dimensional test-cases performed with the first version, including adverse pressure

gradient boundary layers and recirculating or impinging flows. The two formulas for
C_1, having very similar behaviors, are viable alternatives. The present formulation
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FIGURE 2. Pressure coefficient, _ :

without any reference to d, o : Webster et al. experiment (1996).

3.0

V_F with d (Durbin 1995), .... : V_F

has the advantage of not involving the distance to the wall, which may be crucial

in 3-D multizone complex configurations.

The results of the V_F model are now compared with the Webster eta/. exper-

iment (1996). The discussion will be valid for both versions. For all the following

figures, x is taken as the streamwise axis of the wind tunnel, y is the normal axis,

z will be the spanwise axis, across the wind tunnel. The homogeneous direction is

45 ° to the x-axis. All the profiles will be presented with length normalized by c,

the chord of the bump in the wind-tunnel cross sectional plane. The scaled height

of the wind tunnel is then 1/2. The origin of the x-axis is at the onset of the bump,
so the bump ends at x = 1.

Figure 2 shows the pressure coefficient along the wall. The presence of the bump
first creates a mild adverse streamwise pressure gradient upstream. At the onset

of the bump, the regime becomes a strong favorable pressure gradient. The rear of

the bump is a region of strong adverse pressure gradient, and the boundary layer
recovers in a zero pressure gradient, after a mild favorable pressure gradient region,

downstream. One can see that the V2F model reproduces these trends quite well,

both qualitatively and quantitatively. Perhaps the downstream recovery is a bit less
rapid than in the experiment.

The bump is low enough that separation does not occur in its lee side. This made

the maintenance of an infinitely swept condition easier in the experiment. The VeF

predictions of the spanwise skin friction coefficient, which characterizes the three-

dimensionality of the flow, are in excellent agreement with the experimental data

(see Fig. 3). As indicated above, the flow is skewed several times by the spanwise
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pressure gradient. The changes in sign of the spanwise friction coefficient, C], are
accurately reproduced by the V2F model. The most notable discrepancy is in the

level of the streamwise skin friction coefficient, C_, over the bump. This problem
also appears in the 2-D case (Wu & Squires 1997a), so it is not related to the
three-dimensionality of the flow. There is a possibility that the flow is close to

relaminarizing due to the strong favorable pressure gradient on the windward side

of the bump.

v-M
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FIGURE 3. Streamwise and spanwise friction coefficient, _ : V2F with d

(Durbin 1995); .... : V2F without any reference to d; o : 100C_, Webster et al.

experiment (1996); [] : 100C], Webster et al. experiment (1996).

2.2 Flow around an appendage-body junction

2.2.1 Configuration

Since both versions of the V2F model gave very similar results, the computations

presented in this section were done only with the present one, which gets rid of the

distance to the wall. The studied configuration concerns the turbulent flow around

an appendage mounted on a flat plate. The obstacle consists of a 3:2 elliptical

nose and a NACA 0020 tail joined at the maximum thickness t (Fig. 4). There
are neither sweep nor incidence angles; the flow is symmetric and only half of

the domain was actually computed. The incoming boundary layer was tripped in

the experiment so that inlet conditions are clean and well defined: at 0.75 chord

upstream of the nose, the zero pressure gradient 2DTBL has a momentum thickness

Reynolds number of Reo = 5,940. The Reynolds number based on the chord length

c of the obstacle and the maximum velocity of the incoming 2DTBL, U0, is about
4.4 × 10 _. The experimental database used for comparisons consists of a set of
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several well documented experiments conducted at Virginia Polytechnic Institute

(Devenport _ Simpson 1990, Olcmen & Simpson 1995, Olcmen & Simpson 1997).

This test-case is much more complicated than the swept bump since a fully 3-D

computation is required. The presence of the appendage does create a 3DTBL,

but other complex phenomena such as curvature of the obstacle, 3-D separation,

and a horseshoe vortex are also involved. Indeed, the lower wall boundary layer is

both skewed by the presence of the obstacle and also experiences an adverse pressure

gradient in front of the nose of the obstacle that causes the flow to separate upstream

of the leading edge. A recirculation is created in the symmetry plane. This vortical

structure is stretched around the junction, and its direction is reoriented along the

appendage. Although the geometry is fairly simple, the flow is very complex and

is a challenging test-case for turbulence models. Note that accurate predictions of

the horseshoe vortex may be of industrial importance, e.g. heat transfer is strongly

enhanced by the presence of this kind of secondary flow structure [Spencer ctal.

1996, Praisner et al. 1997].

2DTBL

Re 0 = 5,94(

FIGURE 4. The geometry and flow conditions of the turbulent flow around a

wall-mounted appendage.

A multizone grid was used with a high resolution near solid boundaries; basically,

the distance between any boundary node and the closest computational point was
less than y+ = 5 in wall units. This assures an accurate resolution of the viscous

layer. The first zone is gridding the experimental channel: it is Cartesian and

allows imposition of the right spanwise blockage ratio and inlet conditions. In the

experiment, inserts for the wind-tunnel side-walls were constructed to minimize

blockage-induced pressure gradients around the obstacle (Devenport _ Simpson

1990): these are not modeled in our computations, instead slip conditions have

been imposed. The influence of these boundary conditions has been checked to
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be negligible by increasing the channel width by a factor of 2 without any major

modification of the results. The two other zones are curvilinear and adapt to the

obstacle. The first (zone 2) is restricted to the nose, where separation and the

horseshoe vortex arise; the second (zone 3) is discretizing the tail and the wake.

The link between each zone is performed by Chimera interpolation stencils (Benek

et al. 1985, Benek et al. 1987). This technique has been applied with success for a

long time to CFD. It is considered to be very efficient if there are no sharp gradients

normal to the inter-zonal boundaries -- which is the case in our computations.

The results presented in this section have been performed with a three-zone grid of

210,000,231,000, and 231,000 nodes, respectively: i.e., 672,000 discretization points
in total.

2.2.2 Results

Figure 5 shows a compar!son between an oil-flow visualization performed on the

experimental test wall by Olcmen & Simpson (1995) and a set of wall-streamlines

from the computation (trajectories of particles released at the first computational

point above the flat plate). A line of separation wrapped around the obstacle

shows the position of the horseshoe vortex, denoted 'H'. One sees good qualitative

agreement between the VSF model and experiment. Predictions of the location

and the extent of the separation line are very similar to the oil-flow visualizations.

The wake seems also to be well estimated. The experiment shows evidence of

the existence of a recirculation near the trailing edge, denoted 'T', also predicted

by the V£F simulation. No specific data are available for this latter phenomenon.

Nevertheless, a large database will be used for quantitative comparisons; it concerns

the development of the 3DTBL outside of the separation line (stations 1 to 7 in

Fig. 5), the recirculation in the symmetry plane upstream of the appendage's leading

edge (measurement points are indicated on the figure), and the horseshoe vortex

secondary flow (with measurements in the plane perpendicular to the flat plate and

to the obstacle, passing through station 5).

Since the simulation of a 3DTBL was the first topic of this study, some compar-

isons of the spanwise velocity profiles measured at several locations (stations 1 to

7, see Fig. 5) outside of the separation line are presented in Fig. 6. These locations

correspond to LDV and hot-wire experimental measurements (()lcmen &: Simpson

1995). Note that the y-axis is in a logarithmic scale; this exaggerates the near-wall

region. As expected, the most important effect of the spanwise pressure-gradient
is seen close to the wall. The maximum amount of cross-flow increases contin-

uously until stations 4 and 5 (up to 20% of the reference velocity U0) and then

decreases again. The location of these maxima shifts to a higher y-location at each

successive location. The agreement between the VSF model and the experiment

is excellent both qualitatively and quantitatively. This computation confirms the

results obtained for the swept bump, where the 3DTBL is very well represented by

the simulations, even though the linear eddy viscosity hypothesis is being used.

Devenport and Simpson (1990) reported some LDV measurements in the sym-

metry plane upstream of the nose of the appendage. They characterized the action

of the adverse pressure-gradient on the flow with a separation and a recirculation
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FIGURE 5. Olcmen & Simpson (1995) experimental oil-flow visualization (on the

left) and computational wall-streamlines (on the right).

bubble. They noted the existence of bimodal histograms of velocity fluctuations,

associated with very-low frequencies. This kind of feature is radically different

from vortex-shedding and cannot be represented by a RANS calculation. Neverthe-

less, the frequency of this large-scale unsteadiness is much lower than the passage

frequency of coherent structures, which may suggest that only a small fraction

of the turbulent structures will be influenced by this bimodality. Figure 7 shows

the U-profiles in the symmetry plane in front of the obstacle. The experimental

streamwise velocity indicates the separation location around x/t = -0.35. The

V_F computation shows that the flow has just separated at x/t = -0.35. Pro-

files at x/t = -0.40 and -0.30 are well-established unseparated and backflow pro-

files, respectively, which indicates a separation location close to -0.35, in excellent
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FIGURE 6. Spanwise velocity profiles of the 3DTBL, symbols: Olcmen & Simpson

experiment (1995) for stations 1 (o), 2 (D), 3 (o), 4 (A), 5 (<J), 6 (V) and 7 (c>),
: VgF model.

agreement with the experiment. The intensity of the backflow is basically well re-

produced, even if it is slightly under-predicted in the middle of the recirculation

(40% of the nominal velocity instead of 50%). Moreover, in the bubble the exten-

sion of the backflow, normal to the plate, seems to be a little more spread out in

the experiment. Note also that the model is able to reproduce a kink of U, present

at the end of the log-region (around y/t __ 0.5) in the profiles between x/t = -0.35
and -0.20.

Figure 8 shows contours of the turbulent kinetic energy, k, in the symmetry plane.

One can observe a strong similarity between the experiment and the VPFsimulation.

As it has been pointed out by Behnia el al. (1997), the V2Fmodel is able to predict

the right damping of turbulent transport near the wall, especially in the impinging
region. In this area (along the wing in the symmetry plane), all k - e computations

reported in the 4th ERCOFTAC/IAHR workshop on refined flow modeling (1995)

show a large, spurious production of turbulence, in total disagreement with the

experiment. One can also see that the location, shape, and size of the region where

high levels of turbulence exist is very well reproduced by the V$F model. This
is a notable improvement over the k - e simulations. Quantitatively, the maxima

measured levels of k are about 30% higher than those predicted by the computation

(see Fig. 8). A good agreement is obtained outside of the recirculation zone (both

for the 2-D adverse pressure-gradient flow and in the vicinity of the appendage), but

a strong under-prediction does exist inside the vortex. Devenport & Simpson (1990)

noticed that high values of production of k are present in the region where the flow is

bimodal (basically in the middle of the recirculation) and concluded that this strong
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FIGURE 7. Streamwise velocity profiles in the symmetry plane upstream of the

appendage's nose, symbols: Devenport & Simpson experiment (1990), for x/t =

-0.86 (o), -0.65 (o), -0.46 (o), -0.40 (A), -0.35 (<_), -0.30 (V), -0.25 (<_),

-0.20 (+), -0.15 (×), -0.10 (*), -0.05 (*), _: V_F model.

turbulence production was a result of stochastic large-scale unsteadiness rather than

conventional shear layer-mechanisms. Based on the present computational results,

we may conclude that turbulent quantities seem to be affected by this bistable

feature, which cannot be captured by any Reynolds-average turbulence model, but
the influence on the mean flow is rather small.

Since the intensity and location of the base of the horseshoe vortex is well pre-

dicted (in the symmetry plane), it is interesting to see whether the model is able

to reproduce the development around the appendage of the secondary flow associ-
ated with this structure. Olcmen & Simpson (1997) recently reported some flow

measurements in a plane normal to the obstacle and the surface. This plane passes

through station 5 (see Fig. 5). In this plane, the horseshoe vortex has already turned

an angle of 67.6 ° around the appendage.

Secondary flow streamlines are presented in the background of Fig. 9. These rep-

resent particles trajectories in the measurement plane. In this figure, the reference

frame has changed: y is still the coordinate normal to the flat plate and s is the

coordinate in the plane, normal to the obstacle, denoted as the radial coordinate.

Positive values of the flow angle point in the inward direction. A log-scale has

been used to focus on the near wall flow and to see the real accuracy of the pre-

dictions. The horseshoe vortex is clearly present. A large rotational region shapes
the structure of the whole appendage-body junction flow. In this plane, the vortex

center is located at about loglo(y/t) _ -1.1 and sit _ 0.32 in the experiment.
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FIGURE 8. 2D-contours of turbulent kinetic energy in the symmetry plane up-

stream of the appendage's nose.

The simulated secondary flow shows strong similarities with the experiment. The

free-stream fluid is directed towards the appendage and rolls around the center of

the vortex. Its location is predicted at log_o(y/t ) _- 1.1 and sit __ 0.28. One can

observe a line of 0 radial velocity with outward flow on one side and inward flow
on the other side. The location of this line at the lower wall shows the location of

the 3-D separation line seen in Fig. 5. At y/t __ 10 -3, which is very close to the

wall, the model is in excellent agreement with the experiment, showing a separation

line location of about s/t __ 0.5. The V_F computations predict a tiny, secondary,

counter-rotating structure very close to the appendage that is also present in the

experiment. Figure 9 Mso shows contours of the flow angle, relative to the measure-

ment plane, computed as arctan(W/U), U being the tangential velocity component

(normal to the measurement plane) and W being the radial velocity component

(normal to the obstacle). The flow is deflected up to 12 ° towards the appendage

and up to 24 ° away from it. Even if the levels are slightly under-estimated, one

can see that the model is able to predict successfully the whole qualitative and

quantitative distribution of the turning angle in this cutting plane.

3. Conclusion

A modification of the ¢ model equation, which allows the VeF model to be free

of any reference to the distance to the wall, has been presented. The modification
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FIGURE 9. Flow angle--arctan(W/U)--contours and secondary streamlines in

background, in the plane normal to the obstacle and to the surface passing through

station 5 (see Fig. 5); levels of flow angle: -24.1 ° (1), -21.6 ° (2), -19.0 ° (3), -16.4 °

(4), -13.9 ° (5), -11.3 ° (6), -8.7 ° (7), -6.1 ° (8), -3.5 ° (9), -1.0 ° (A), 1.6 ° (B),

4.2 ° (C), 6.7 ° (D), 9.3 ° (E), 11.9 ° (F).

makes use of the measure of anisotropy, v _/k, provided by the model. This version

gives very similar results (in terms of accuracy and stability) to the original one,

but it is more suitable for computations in 3-D, complex, multizone configurations.

After the implementation of the V2F model in NASA's CFD code, INS3D, com-

putations of three-dimensional turbulent boundary layers have been performed. De-

spite the linear eddy viscosity hypothesis, the model is able to reproduce the main

features of the mean quantities. The secondary flow and the turning angle are pre-

dicted correctly both qualitatively and quantitatively in both cases of a swept bump

and an appendage mounted on a flat plate. The latter presents a fairly complex

3-D flow including separation and a horseshoe vortex. It is a challenging test-case

for turbulence models; V2F computations agree very well with the experiment. The

description of the horseshoe vortex is reproduced accurately in terms of its location

and intensity, even if the secondary flow is slightly under-estimated. The position

of the 3-D separation line is correctly simulated and a counter-rotating horseshoe

vortex has even been found close to the appendage-body corner, in agreement with

the experiment.

In the future, the V2F model needs to be applied to flows getting closer to the

configurations met in industry. In particular, we plan to study the effects of rotation,

heat transfer, or compressibility associated with some more 3-D complex geometries.
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Accurate modeling of impinging jet heat transfer

By M. Behnia, S. Parneix AND P. Durbin

1. Motivation and objectives

In the last two decades, jet impingement heat transfer has received considerable

attention because of its many applications for high heat flux cooling or heating.

There are numerous papers dealing with this problem both numerically and experi-

mentally. Some reviews have also appeared, amongst which some of the most recent

are Jambunathan et M. (1992), Viskanta (1993), and Webb & Ma (1995).

There are a number of parameters which can affect the heat transfer rate in a

jet impingement configuration. For instance, the jet-to-target distance not only

affects the heat transfer rate, but also can have a significant effect on the local

heat transfer coefficient distribution (Baughn & Shimizu, 1989). For the design and

optimization of jet impingement cooling or heating systems, it is essential that the

effect of these parameters of importance be characterized. In some of the previous

studies, these effects have been addressed, and results of the experiments performed

by different investigators have sometimes been contradictory due to the differences

in the experimental conditions. In their review, Jambunathan et al. (1992) clearly

pointed out this problem and noted that, for a better understanding of the jet

impingement heat transfer process, the details of the flow, geometry, and turbulence
conditions are required so that a comparison between different experimental data
can be made.

Due to the difficulties in performing and comparing experiments, a numerical

simulation of the problem would have been an ideal candidate for quantifying the
effect of the parameters of interest. However, turbulent impinging jets have complex

features due to entrainment, stagnation, and high streamline curvature. These

features prove to be incompatible with most existing turbulence models, which are

essentially developed and tested for flows parallel to a wall. For instance, Craft

et al. (1993) have demonstrated some of the problems in these turbulence models,

namely a substantial over-prediction of heat transfer in the stagnation region by the

widely used k - e turbulence model. In fact, the complexity of this flow has led to

it being chosen as an excellent and challenging test-case (see ERCOFTAC database

at http://fluindigo.mech.surrey.ac.uk) for the validation of turbulence models. A
number of investigators have gauged the success of their models based on this flow.

However, turbulence modelers encounter numerous difficulties due to the fact that

the details of the experimental data are often not known or that the flow conditions

and geometry are not well posed.

For validation purposes, we chose the data sets obtained in a fully-developed im-

pinging jet configuration (i.e. Banghn & Shimizu 1987, Banghn et al. 1989, Lytle

& Webb 1995, Yan 1993 and Mesbah 1996). Some computations with the flat plate

configuration (Fig. 1) at a single Reynolds number have been reported in the 1996
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CTR Annual Research Briefs (Behnia et al. 1996). It has been shown that the V2F

model successfully and economically predicted the rate of heat transfer. Subsequent

simulations are presented in this report to determine the effects of important pa-

rameters such as jet-to-target distance, geometry, and Reynolds number, as well as
jet confinement.

FULLY

DEVELOPED

JET

,....g
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FIGURE 1. Configuration of the jet impinging on a flat plate.

2. Accomplishments

2.1 Background

2.1.i Simulation techniques

Most predictions of jet impingement heat transfer in industry involve the use

of standard or modified versions of the k - e turbulence model, available in all

existing CFD packages. These models have usually been developed, calibrated, and

validated using flows parallel to the wall. Physical phenomena involved in impinging
flows on a solid surface are substantially different and have been considered as

highly challenging test-cases for the validation of turbulence models. For example,

simulations from Craft et al. (1993) of a non-confined impinging jet cooling a heated

flat plate, using a k - e type model, showed dramatically poor results for wall heat

transfer coefficients (e.g. more than 100% over-prediction in the stagnation region).

The VlgF turbulence model, introduced by Durbin (1991, 1993b), could be thought

of as a restriction of a full Second Moment Closure model developed subsequently

(Durbin 1993a). It has the advantage of keeping an eddy viscosity, which avoids

some computational stability problems encountered with Reynolds-stress closure
models. It is a general geometry turbulence model, valid right up to the solid wall.

It does not need wall functions, whose universality is increasingly being called into

question, especially in impinging regions. The alternative is the introduction of

damping functions, which are tuned to mimic the near-wall effects. But all these
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models use a single-point approach that cannot represent the well-known, non-

local effects of pressure-reflection that occur near solid boundaries. Moreover, these

damping functions often involve an ill-defined normal distance to the wall, which

cannot be used in complex configurations. They are also highly non-linear and
sometimes introduce numerical stiffness.

The V2F model brings more physics in its body. First, it introduces a new ve-

locity scale, v 2, used for the evaluation of the turbulent viscosity, instead of k; v2

might be regarded in some cases as the velocity fluctuation normal to the stream-

lines. It is equivalent to the turbulent kinetic energy, k, far from any solid walls; in

the near-wall region, it becomes the velocity fluctuation normal to the solid surface,

irrespective of the orientation of the surface relative to the flow. Theoretically, k is

unable to represent the damping of turbulent transport close to the wall, whereas

normal velocity fluctuations provide the right scaling (Behnia et al. 1997). Follow-
ing the full Reynolds stress analysis (Durbin 1993a), in order to model non-local

characteristics of the near-wall turbulence and to avoid the use of two-point corre-

lations, which are not viable for non-homogeneous turbulence, the V_F model uses

an elliptic operator to compute a term analogous to the pressure-strain correlation.

Ellipticity is introduced by a modified Helmholtz operator, which is amenable to

numerical computations and which introduces wall effects by a linear equation, tak-

ing care of the transition between the near-wall region and regions far from solid

boundaries. Finally, some physical constraints have been added in order to prevent

non-realizability of the solution, especially in the stagnation region (Durbin 1996).

The temperature field is computed through a standard eddy diffusivity approx-
imation. Concerning the turbulent Prandtl number, Prt, the Kays and Crawford

formulation (1993) was chosen for all of the following computations, including those

with k - 6, since it gave a more physical representation near the wall (Prt increases
from 0.85 in the far-field to about 1.7 in the near wall-region) and yielded somewhat

better agreement in the impingement region. Nevertheless, the improvement over

using a constant value is of the order of 10% (Behnia et al. 1997), which cannot
explain the 100% error of the k - c model. The flow and the turbulent fields have

to be accurately resolved for obtaining good heat transfer predictions. The basis

and equations of the complete V2F model can be found in Behnia et al. (1996).

All computations were performed with INS2D, a general geometry, finite differ-

ence code developed by Rogers and Kwak (1990). The spatial discretization of

convective terms was via a third order, upwind biased scheme; diffusion terms were

central differenced. Fine, non-uniform, orthogonal, cylindrical grids were used, with

a high resolution near all solid boundaries. A mesh sensitivity was carried out by

dividing each mesh by 2 in the axial and radial directions. This changed the im-
pingement region Nusselt number by less than 1%; therefore, the present solutions

are considered grid-independent.

The flow conditions at the nozzle exit may affect the computed flow field. There-

fore, for validation purposes, we chose the case of a jet coming from a long pipe so

that nozzle-exit conditions are fully turbulent and well defined. A fully-developed



152 M. Behnia, S. Parneix _ P. Durbin

turbulent pipe flow was first computed in a preliminary computation and then in-

terpolated onto the grid to provide the inlet condition of the jet. The flow domain

began approximately 2 pipe diameters upstream of the jet exit so that the pipe pro-
files may evolve in the nozzle as the flow approaches the nozzle outlet. It is noted

that prescribing the inlet conditions upstream of singularities is also a requirement

in other types of flows, e.g. the backward-facing step. Further, in the unconfined

case, this allows the upper computational boundary to be a sufficient distance from

the wall that it does not affect the flow near the impingement surface.

2.1.2 The impinging jet on a fiat plate

Some computations of jet impingement heat transfer have been reported in the

1996 CTR Annual Research Briefs (Behnia et al. 1996). The main conclusions of

that paper are summarized on Figs. 2a and 2b. Computational results are presented

for the widely-used test-case of an unconfined impinging jet on a flat plat at Re =

23,000 and for a nozzle-to-plate distance of 6 jet diameters. One can see that

the experimental results are fairly well reproduced by the VSF model; in fact, the

simulation falls into the range of available experimental data sets, represented by

the gray zone of Fig. 2a. In comparison, the k - ¢ model strongly over-predicts the

heat transfer rates in the stagnation region (by about 100%). This over-estimation

extends up to 2 - 3 jet diameters away from the stagnation point, although the flow

has already been parallel to the surface at this location. This indicates that the
quantitative misbehavior spreads up in the region surrounding the impinging area

and may influence the whole distribution of heat transfer, even qualitatively.

The excellent V_F results have been confirmed by studying the influence of the

nozzle-to-target spacing, H/D, on the stagnation Nusselt number. Experimental
data of Baughn & Shimizu (1989), Baughn et al. (1991), Yah (1993), and Lytle

& Webb (1995) are plotted on the same graph, and a line of best fit has been

evaluated for comparison purposes. A set of 15 simulations has been performed

for each model and plotted against the available experimental data sets (Fig. 2b).

The V2F model is in very good agreement with the experimental curve of best fit,

with an optimal stagnation heat transfer rate at HID --- 6 - 7. Note that this

optimal value has already been reported in numerous experimental studies (e.g.

Martin 1977, Baughn & Shimizu 1989, Webb & Ma 1995). The quantitative over-

prediction of the k - ¢ model is present for all nozzle-to-plate spacings. If one
wants to use this model for design purposes, the efficiency of the cooling system

would be over-estimated; however, more dramatically, its optimization would also

fail completely. For instance, the k - ¢ model predicts 2 optimal nozzle-to-plate
distances of 2.5 and 5 diameters, in total disagreement with the experiments.

2._ Influence of Reynolds number

Turbulence models are sometimes fitted for a given test-case, at a given Reynolds

number and might give much worse results when flow conditions are changed. Thus,

it is essential to check the range of validity of the results obtained by the V_F model

in the 1996 report for Re = 23,000. The dependence on the nozzle-to-plate distance

has already been shown to be well captured by the model.
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FIGURE 2. Impinging jet on a flat plate, Re = 23,000 (a) Local distribution of

wall heat transfer for H/D = 6, (b) Dependence of stagnation wall heat transfer on

H/D, _ V2F, .... : k - ¢, gray zone and ,, : experiments, --.-- : line of best

fit of experimental data.

The evolution of the local Nusselt number on the fiat plate with increasing

Reynolds number is presented for H/D = 2 (Fig. 3). Comparisons are with "fan's

(1993) experimental data. One can observe an augmentation with Re of the rel-

ative height of the secondary peak in the Nu distribution. The model is quali-

tatively consistent with the experiment. As for the lower Reynolds number, this

peak is less pronounced in the computations, but its location is very well predicted

(around r/D = 2). Recall that a 20% scatter existed in the experimental data at
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FIGURE 3.

transfer at H/D = 2, _ : V2F, symbols: experiments (e : Re = 23,000,

Re = 50,000, ×: Re = 70,000).

Influence of Reynolds number on the local distribution of wall heat

[] :

Re = 23,000 and that Yan's data were systematically close to the lowest quantita-

tive bound on the whole set of available data. In light of this, the V2F results may
be considered quite good.

Figure 4 presents the stagnation Nusselt number obtained for different flow rates

at H/D = 6. The experimental data from Lytle & Webb (1995) and Yan (1993) are

plotted on the same graph and a line of best fit has been evaluated for comparison

purposes. One can see that the dependence on Reynolds number, predicted by the

V2F model, is in excellent agreement with the experimental data. In particular, the

quasi-laminar correlation Nustag cx Re °'s has been obtained accurately. Of course,

the Re number is high enough to assure a turbulent regime; for instance, Viskanta

(1993) noted that heat transfer rates are 1.4 - 2.2 times as high as the laminar

rates. Moreover, a V2F correlation, showing the Nusselt number evaluated at 6 jet

diameters away from the stagnation point, for different jet-to-plate distances, has

been added to Fig. 4. Here, a dependence on Re °'r7 is predicted by the VgF model,

in good agreement with previous experiments, which have established a dependence

on Re °'7-°'s5 (see Jambunathan et al. 1992, Viskanta 1993).

2.3 Influence of the impinging _urface'8 geometry

Very little experimental and computational work has been done on impinging

flows in geometries other than flat plates. The objective of the work in this section

has been to accurately compute the flow and thermal fields in an axisymmetric

isothermal fully developed jet perpendicular to a heated pedestal mounted on a flat

plate (Fig. 5). The geometry resembles that of an electronic component. Recently,

Mesbah (1996) has measured the local heat transfer coefficient in this configuration.
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He used the preheated-wall transient technique in conjunction with surfaces coated

by thermochromic liquid crystals. For comparison purposes, we adopted the same

geometry. In addition, computations were also performed using the widely used
standard k - e turbulence model.
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FIGURE 5. Configuration of the jet impinging on a wall-mounted pedestal.
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Contours of Stokes streamlines are shown in Fig.6 for H/D = 6. Only a qual-

itative analysis will be done since no flow measurements are available. The flow,

parallel to the jet axis at the nozzle exit, develops into a free jet before decelerating

in the axial direction on top of the pedestal. Then, it turns sharply and starts

to form a radial wall jet along the upper surface of the pedestal. At the corner,

the flow separates and re-attaches downstream on the plate. This creates a recir-

culation which has a significant effect on the wall heat transfer. This bubble is

much shorter than that found downstream of a backward-facing step (recireulation

lengths between 5 and 8 times the step height); the rather short length is due to

the strong influence of the outer region of the impinging jet and to the choice of an

axisymmetric configuration. After reattachment, the flow develops into a wall jet

along the plate. The ambient fluid outside the jet is entrained into the core with a

developing shear layer separating the core and the ambient fluid. This entrainment

is shown by the curvature of the streamlines outside the pipe towards the symme-

try axis and leads to a small recirculation zone in the vicinity of the exit pipe-wall.

This feature and the presence of a secondary recirculation near the bottom of the

pedestal indicate a sufficient grid resolution around the exit of the nozzle and next

to the pedestal.

FIGURE 6. Streamlines for HID = 6 computed with the V2F model.

We evaluated the temperature distribution for H/D = 6 using an isothermal

boundary condition along the upper surface of the pedestal and downstream of it,

on the plate (Fig. 7). The local wall heat transfer coefficient has a local minimum

on the stagnation line on top of the pedestal. The Nu number is nearly constant

in the vicinity of the stagnation point and then increases sharply as the corner

is approached. The value of stagnation Nusselt number is similar to that of a jet
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impinging on a flat plate. However, the local Nusselt number distribution is radically

different from the fiat plate configuration since, in that case, the stagnation Nusselt

number is a local maximum. Hence, the fiat plate results may not be suitable for

complex geometries that can be found in some industrial applications. Figure 7

shows that the VeF model reproduces this behavior in the vicinity of the symmetry

line, whereas the k - e predictions show a local maximum and a sharp decrease of
Nu. Quantitatively, k - e predictions over-estimate the wall heat transfer above the

whole pedestal upper surface by more than 150%. This over-prediction is believed

to be due to the over-prediction of turbulent kinetic energy in that region (note

the dark gray zone in Fig. 8). The use of v2 as the velocity scale instead of k

for computing vt is essential here (Behnia et al. 1997), and therefore the V2F
computations are much more realistic with only 5 to 15% of over-prediction. It is

recalled that, for the impinging jet on a fiat plate, the set of available experiments

shows a 20% data scatter (Behnia et al. 1996). Moreover, Mesbah (1996) used

the transient technique which gave results in the lower band of this experimental

data set in the stagnation region. With this in mind, one can say that the V2F

predictions are excellent.
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FIGURE 7. Local wall heat transfer coefficient for H/D = 6 and Re = 23,000 on

top of the pedestal (left of ----- ) and downstream of it on the flat plate (right

of m.__ ), _ : V_F, .... : k - _, o : Mesbah's experiment (1996).

Along the plate, a local maximum wall heat transfer point is created in the reat-

tachment region, about one diameter downstream of pedestal and slightly upstream

of the reattachment point, as might be expected from the backward-facing step re-

sults (see Vogel & Eaton 1985). The VeF model predicts both the location and
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magnitude of this peak accurately; k - e predictions still show almost 100% over-

prediction, which may be more due to the diffusion of the dramatic heat transfer

over-prediction on top of the pedestal rather than to an over-prediction of turbulence

production in the reattachment area. The angle of impingement is much smaller

(between 30 ° and 40 °) in the reattachment region than around the symmetry axis.

Finally, the V2F simulations show a plateau with a secondary peak at the foot of

the pedestal. This phenomenon is believed to be due to the existence of a secondary

recirculation. The plateau is present in the experiment, but without any secondary

maximum. We suspect that in the experiment, longitudinal heat transfer in the

solid near the corners of the pedestal occurs. Also, the longer times required for

measurements in this region make the underlying assumption of the measurement

technique questionable (Mesbah, 1996). Therefore, a constant temperature or con-

stant heat flux assumption would not be accurate any more, which may explain the

discrepancy.

k-e V2F

0.12 0.07
0 0

FIGURE 8. Contours of turbulent kinetic energy for H/D = 6. Overprediction of

turbulent kinetic energy is reflected in the darkest gray area on top of the pedestal.

Simulations have been carried out for a fixed Reynolds number (Re = 23,000)

and a wide range of aspect ratios (1 < HID <_ 8) to determine the dependence on

HID of the stagnation Nusselt number on top of the pedestal and the local maxi-

mum Nusselt number on the plate. The behavior of Nusselt number variation with

the jet-to-pedestal distance needs to be known for the design and optimization of

impingement cooling or heating systems. Figures 9a and 9b show the correspond-

ing values computed with both the V2F and k - _ models. The V$F computations

show very good agreement with Mesbah's experiment. As indicated before, the

transient technique yielded results in the lower band of the fiat plate experimental

data set, so the 5 to 15% over-prediction is remarkable. Moreover, it is noted that
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this over-prediction is almost constant; the dependence of stagnation Nusselt num-

ber on HID is very well reproduced. Note also that the V2F computations show the

existence of a maximum of stagnation heat transfer in the range 6 < HID < 7.5.

This cannot be compared to Mesbah's experiment, since HID = 6 was the highest

aspect ratio studied, but this is consistent with previous flat plate results (Martin

1977, Baughn & Shimizu 1989, Behnia et al. 1996). The k - e model fails to repro-

duce the experimental trends, not only quantitatively (150% of over-prediction) but

also qualitatively, which is even more critical from a practical point of view. Re-

garding the maximum Nusselt number downstream of the pedestal along the plate,

both models reproduce a constant decrease with HID. The k - c computations

yield almost 100% over-estimated values, whereas V2F simulations are very close

to the experiment. The only disagreement is for HID = 4 where the experimen-

tal maximum Nusselt number is higher than for HID = 1 and 2. Perhaps more

experimental data points should be obtained to assess this non-monotonic behavior.

2.4 Effect of confinement

All the previous computations have been performed for an unconfined geome-

try. However, industrial applications, especially in electronic cooling, require the

impinging jet to be confined with a solid boundary at the level of the nozzle exit.

Numerous experiments have been conducted in order to stud 3, the effect of con-

finement on jet impingement heat transfer. The aim was mainly to know whether

the physics and correlations involved in unconfined geometries could be applied in a

confined context. Obot et al. (1982) concluded there was a reduction in the average

heat transfer rate from 5 to 10% when confinement was added. Again, comparisons

are difficult to establish from different experiments when jet outlet profiles or ex-

perimental conditions are different. Moreover, to our knowledge, no experimental

data are available for a fully-developed jet coming from a long pipe. Since VeF

simulations gave satisfactory results in the unconfined geometry, we assume that

the model is accurate enough to undertake a numerical comparison study.

FIGURE 10. Streamlines for H/D = 1 and Re = 23,000 computed with the V2F

model for the confined (left) and unconfined (right) configurations.

Several computations have been performed by adding a wall at the nozzle exit

(Fig. 10). We varied the nozzle-to-plate distance, and the local heat transfer rates

are compared to the results obtained with an unconfined geometry. Figure 11
shows the Nusselt number distribution for different HID. One can see that, for a

high enough jet-to-plate spacing, the confinement has no effect on the heat transfer

rate. The presence of a top wall creates a recirculation (Fig. 10), but its influence
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FIGURE 9. Impinging jet on a pedestal at Re = 23,000, influence of nozzle-to-

plate distance on (a) the stagnation heat transfer coefficient on top of the pedestal

and (b) the maximum heat transfer coefficient downstream of the pedestal along
the plate, _ : V_F, .... : k - e, o : Mesbah's experiment (1996).

is rather small. Indeed, for H/D > 1, no significant difference in the wall heat

transfer distribution has been observed. For tt/D < 0.5, the Nusselt distributions

start to diverge. As it has been found in experiments, the average heat transfer

rate is slightly lower for the unconfined case. It can be explained by the fact that
the top wall introduces a resistance to the flow; the entrainment of the external

fluid by the jet is less important, decreasing the global efficiency of the impinging
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FIGURE 12. Local wall heat transfer, simulated by the V2F model, for the jet

impinging on the pedestal at Re = 23,000 and different nozzle-to-plate distances

(H/D = 2, 0.5, and 0.25) _ : confined, .... : unconfined.
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jet heat transfer. In the case of a smaller nozzle-to-plate distance (not shown here),

the recirculation is more confined and active; it is located closer to the target plate
and then has a stronger influence on the wall heat transfer coefficient. Nevertheless,

even for a very low H/D (us low as 0.1), the stagnation heat transfer rates are not

noticeably influenced by the presence of confinement. Up to a radial distance of 0.5

jet diameters away from the stagnation point, the Nu distributions stay unchanged

whether the jet is confined or not. This is partially confirmed by Garimella & Rice

(1995) who noted that, for H/D > 2, confinement had little effect on heat transfer

at stagnation point. A primary peak is created at riD "_ 0.5 as H/D decreases.

This peak corresponds to the acceleration of the local velocity, which occurs for

H/D < 0.25. Its location is fixed, in good agreement with Colucci & Viskanta
experiment (1996). A secondary peak is also created, but this time, its location is

moving toward the axis of symmetry when the nozzle-to-plate distance is decreased.

Again, such a behavior has been found to be in good qualitative agreement with

Colucci & Viskanta experiment (1996). Similar computations have been performed

for the case of the wall-mounted heated pedestal. One can see in Fig 12 that the

influence of confinement is much less effective than for the flat plate configuration.

Even for H/D = 0.25, heat transfer rates stay unchanged. First, the diameter of

the pedestal is slightly smaller than the jet diameter. Thus, through the analysis of

the previous results for the flat plate, no confinement effect was expected on top of
the pedestal (r/D < 0.5). Downstream of it, on the plate, the top wall is then at a

normalized distance of more than one jet diameter (H/D + 1/1.06); this distance is

too high to expect any significant change in the heat transfer rate. Moreover, the

recirculation, which strongly acts on the Nusselt distribution, is driven by the jet

itself and is less subject to be affected by the confinement.

In conclusion, the confinement, present in most industrial applications, does not

have a significant impact on the wall heat transfer coefficient unless the jet-to-

target spacing is considerably reduced (HID < 0.25). The average Nusselt number
decreases with confinement, but the local heat transfer distribution in the stagnation

region (r/D < 0.5) is not modified; unconfined impinging jet stagnation Nusselt
number correlations can thus be used.

3. Future plans

The main aim of this research has been to assess the ability of computational

fluid dynamics to accurately and economically predict the heat transfer rate in an

impinging jet situation, strongly relevant to industrial applications, e.g. in elec-

tronic cooling. The computations carried out herein show that predictions by the
normal-velocity relaxation model ( VeF model) agree very well with the experiments.

The influence of parameters of interest such as nozzle-to-plate distance, Reynolds

number, geometry of the impingement surface, or confinement has been shown to

be well captured. In comparison, the widely-used k - ¢ model does not properly

represent the flow features, highly over-predicts the rate of heat transfer, and yields

physically unrealistic behavior.

It is planned to perform additional computations to cover a wider range of pa-

rameters (e.g. 3D configurations and a range of Prandtl numbers). In particular,
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for electronic cooling applications, dielectric liquids in a confined jet geometry and

multiple jets configurations need to be explored.
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Application of turbulence
models to high-lift airfoils

By Georgi Kalitzin

1. Motivation and objectives

Accurate prediction of the flow over an airfoil at high lift condition is a very

challenging problem. Even for single element geometries under subsonic conditions,

complicated flow structures appear with increasing angle of attack. For a sufficiently

high Reynolds number, the flow undergoes a transition from laminar to turbulent.

Depending on the flow conditions and the shape of the airfoil, a laminar separation
bubble may appear on the upper surface upstream of transition. The laminar

flow separates, transitions into turbulent flow, and reattaches again. A turbulent

separation bubble may occur further downstream near the trailing edge for higher

angles of attack. The pressure reaches its lowest value at the suction peak, and the

lift generated by the airfoil achieves its maximum value for the considered Reynolds

and Mach number. A further increase in the angle of attack leads to stall conditions.

The lift drops as a consequence of complete separation of the flow.

Consideration of multi-element airfoils further complicates the problem. The

wake of upstream element interacts with newly forming turbulent boundary layers or
wakes of downstream elements. This requires from a turbulence model an accurate

prediction capability for turbulent wall bounded flows, for free shear layers, and for

flow separation.

Although algebraic models are still widely, and often quite successfully, used in

the aircraft industry, there is an increasing interest in transport models. This is

partly due to limitations of algebraic models in flows around multi-element airfoils

and in three-dimensional flows. Additionally, the way in which these models are

implemented in a CFD code may strongly influence the results of a computation
(Haase e_ aI., 1997). Second moment closure transport models are often very stiff

and too expensive due to the high number of strongly coupled Reynolds stress

equations. This report concentrates on the application of one- to three-equation

eddy-viscosity models and, in particular, of the V2F model.

The accuracy of the results depends on the turbulence model as well as the under-

lying numerical flow solver. Some of the difficulties encountered in our computations
could be traced back to the artificial viscosity added by the numerical scheme. Par-

ticular flow features, such as transition, seem to require a locally very fine mesh or
a refinement of the numerical scheme.
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2. Accomplishments

2.1 Numerical method

An extended version of the code INS2D developed by Rogers and Kwak (1991) has

been used to solve the two-dimensional incompressible Reynolds-averaged Navier-

Stokes equations and the particular turbulence model. The underlying numerical

method is based on the artificial compressibility method suggested by Chorin (1967).

The code uses a finite difference scheme for structured grids with third order upwind
discretization of the convective terms and a second order discretization for the dif-

fusion terms. The time integration is implicit. The Generalized Minimum Residual

(GMRES) method (Saad, 1986) is used to minimize the residual. The turbulence

equations are solved separately from the mean flow. The mean flow is solved as a

3 × 3 coupled system.

_._ V_F turbulence model

The V2F model introduced by Durbin (1995) consists of three transport equa-
tions for the turbulence variables. The first two have the form of the standard k-e

equations:

-_Ok+ O(ujk) p,T_e+ 0 [Oxj_ (v+--)_xj_, Ok],

o, o(u,,l_ 0 [ .,)0,]
The third equation describes the transport of the turbulent intensity normal to the

streamlines and models the anisotropy of the Reynolds stresses caused by near-wall
effects:

Ov_ O(uiv-_) _ ki_-_ + 0 [ .0_-]+ +
The production of v 2 is modeled by means of an elliptic relaxation equation:

/= _(c, -1) - -c,T_.

In these equations the time and length scales are computed as

T' = max [-ke,6_/-_, L'=CLmax[k3--1e2,C.(_)l/4 ] .

An upper bound is imposed on the time and length scales for fully turbulent cal-

culations to suppress the spurious production of eddy-viscosity in the stagnation
region (Durbin, 1996):

(1)
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and
k3/2

L = min(L', v/__C,_-_ _). -. -.

where Sij = 0.5(0ui/Oxj + Ouj/Oxi) represents the strain tensor. The eddy-viscosity
is given by

u, = Cur-iT,

and the model's constants are:

C_ = 0.19, ak = 1, _r_ = 1.3, C_2 = 1.9,

C1 = 1.4, C2 = 0.3, CL = 0.3, C, = 70, a = 0.6.

C_1 is here a function of the distance to the closest wall d:

C_l = 1.3 -_-0.25/(1 -_-(d/21)2) 4

with l = L/CL. Work is under way (Parneix & Durbin, 1997) to substitute the wall
distance with the ratio of v2 over k.

The wall boundary conditions for the turbulent quantities are derived from the

asymptotic behavior of k and v2 as y ---*0.

-- 2Vkl 20v2_-_

k0= 0, = 0, = f0 = (2)
The indices 0 and 1 label the wall and the first point away from the wall, respectively.

The k and e equations as well as the v 2 and f equations are solved pairwise

simultaneously. The size of the first cells at the wall is for the calculated airfoils

of the order of 10-6 times the airfoils cord to ensure y+ values of about 1 for the

considered Reynolds numbers. This leads to very large factors in the e and f wall

boundary conditions. Very small time steps (on the order of 10 -4 ) were required

at the beginning to prevent a divergence of the solution.

Relaxing these boundary conditions, for example by multiplying the latter two

equations in (2) by
rain(n, na)

na

where n is the iteration counter and na is set to a value between 20 and 100,

significantly improves the convergence. Keeping the dissipation of the turbulent
kinetic energy e small at the wall during the first iterations ensures a rapid grow of

the turbulent boundary layer.

Transition is modeled by switching off various source terms by means of an array

T, which is set to zero in the laminar part of the flow and 1 elsewhere, with a linear

gradual change in the transition region. To ensure a laminar flow upstream of

transition, the eddy-viscosity has been multiplied by T in the mean flow equations.

Due to convergence problems, first order upwind discretization of the convective

terms for the k, e, and v 2 transport equations has been employed. Although a

higher order discretization of these terms is desired, it is not expected that this
significantly influences the prediction accuracy of wall bounded flows in which the

dominant terms are the source and diffusion terms. It might, however, influence
the wake of particular elements of the airfoil and areas with massive separation.
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2.3 The artificial compressibility constant

As mentioned, the code INS2D uses the artificial compressibility method in which

a time derivative of pressure is added to the continuity equation

to couple it with the momentum equation

auk 0(ujuk) 0p 0 i,
+ = +

The parameter fl is the artificial compressibility constant which seems to be arbi-

trary since, approaching the steady state, the time derivative of the pressure tends to
zero and the momentum equation decouples from the continuity equation. However,

as pointed out by Pan and Chakravarthy (1989) 'this is true only in the differential

equation level, or in the difference equation level when central difference is used ...

In upwind schemes, the upwind difference is directly related to the eigensystem of

the problem and is strongly affected by the choice of 8. Even in the steady-state

solution, the continuity and the momentum equations are still coupled by fl, and

hence its choice will affect the final solution.' To see this, let's consider the first

order upwind flux between two nodes of the mesh:

1 z 1
Ei+l/2 _- "_( i+1 -{- El) -_- _(AE_+,/2 - AEI++,/_).

A first order correction of flux differences is added here to the simple average of the

fluxes of the nearby nodes. The flux differences are computed over the Jacobian of

the system:
OE +

AE_I/S = _ AD_+1/_,

Following definitions for 2-d curvilinear coordinates have been made:

D= , E= ulQ + klp , _ = kl klul + Q k_Ul ,
us u2Q + ksp ks kaus ksu2 + Q

(2)

with ks representing the metric of the computational domain and Q = kaua + k2u2

the projection of the velocity on the direction of the grid lines. The Jacobian

matrices for the positive and negative traveling waves have been derived (Rogers et

al., 1991) by splitting the Jacobian of the whole system with a set of right and left

eigenvectors:
OE +

_ RA+R -1
OD
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lent, Atmean flow = Atturb. model = 1012, _ max. divergence, max.

mean flow residual, ........ max. residual of the turbulent kinetic energy.

with

and

0 c3 -c3 I
1 -2_k2 ul(Q + c) + 3kl Ul(Q - c) + 3k1

2_c2 2Bkl u2(Q+ c) + 3k2 u2(Q - c) + _k2]

[ k2ul - kaU2 -Qu2 - Bk2
R -1 = [ c-Q 3kl

\ -c - Q 3kl

The positive and negative eigenvalue matrices are

h += 0 Q+c , A-=
0 0

3k2
ilk2 / '

o)o o QO .0 0 -c

The artificial speed of sound c = x/'Q z + fl(k_ + k_), which appears by calculating

the eigenvalues, is proportional to v/ft. While fl influences only two elements in

the Jacobian matrix (2), it affects almost every element of R and R -1. The first

order upwind corrections of the fluxes appear as dissipation terms in the momentum

equation of the form cAu i. For a higher order upwind scheme, these dissipation

terms are proportional to cAz_kui, where the operator A_kx_ consists of higher

order differences. In areas of the flow where sudden changes appear, these dissipa-
tion terms are non-zero and grow as 3 increases. Additionally, the artificial speed

of sound, and hence fl, appears in the far-field boundary condition.

Without specifying transition, the flow around the NLR7301 airfoil has been

computed with the one-equation Spalart-Allmaras model (Spaiart, 1992) for a wide

range of ft. The computations have been fully converged until the maximum di-
vergence of the velocity field was below 10 -s. Convergence plots of the maximum
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FIGURE 3. Multizone mesh with overlapping cells (shaded) for NLR7301.

residual of the mean flow, the maximum residual of the turbulent kinetic energy,

and the maximum divergence of the velocity field are shown in Fig. 1. The effect of

the input parameter/3 on the pressure distribution and the velocity profiles, here

for station 14 which is normal to the upper surface near the trailing edge of the

flap, is shown on Fig. 2. Pressure oscillations and a too high pressure on the upper

surface of the flap occur for very large values of/3. The plots show that refining the

mesh reduces the influence of/3. However, it generally also impedes convergence.

2.4 NLR7301 wing-flap airfoil

The flow around the two-element NLR7301-airfoil (Van den Berg, 1979) with

2.6% gap has been computed for the flow condition: Re = 2.51 × 106 and angle of

attack _ = 13.1 °. The flow is laminar over most of the lower surface of the wing and

over the entire lower surface of the flap, while pressure gradients along the upper

surface of the flap lead to transition after halfway on the flap. Transition occurs

on the upper surface of the wing at 2.4... 3.5_0, on the lower surface at 71... 74%,

and on the upper surface of the flap at 106.5... 108% of the cord c. The cord c is

here defined slightly larger than the cord of the wing. A laminar separation bubble

occurs on the upper surface of the wing upstream of transition. The flow remains

fully attached on the trailing edge of the wing and on the flap.

This test case has been extensively investigated during the ECARP project (Haase

et al., 1996). The mandatory mesh of this project has been adopted here. The

mesh has been split into 12 zones. The zones have been extended with one row of

neighboring cells to overlap with each other, enabling communication between the

zones. A close-up of the mesh between the wing and the flap is shown in Fig. 3. One

can see that one node requires special treatment as it is shared by more than four

cells. Here it is treated as a boundary point. The flow variables at this point have

been set after every iteration to an average value calculated from the surrounding
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FIGURE 4. NLR 7301 with 2.6% gap, Re = 2.51 x 10 -6, a = 13.1 °, 40000 cells.

nodes. Note, that this point is outside of a boundary layer and the turbulent region.

The computational mesh consisting of 40000 cells is shown in Fig. 4a. The laminar
and turbulent areas are distinguished with two different grey tones. The location of

transition used for the presented results is given on the grid plot. Qualitative results

calculated with the V2F model in the form of shaded contour lines for the eddy-
viscosity, turbulent kinetic energy, and turbulent intensity normal to the streamlines

are shown in the same figure. One can clearly see the different behavior of the
turbulent kinetic energy k and the variable _-Y, the maximum value of which is

about 4 times smaller than of k. While the eddy-viscosity changes in the transition
region relatively smoothly, the largest values of k appear right after transition on

the upper surface of the wing, which corresponds to the sharp rise in skin friction

shown in Fig. 5. The skin friction plot shows clearly the laminar separation bubble

and the transition on the lower surface of the wing. To achieve convergence a large

value of/3 has been employed. Consequently, pressure oscillations on the flap have
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FIGVRE 5. Skin friction on wing, NLR7301 with 2.6% gap, Re = 2.51 x 106, a =

13.1 °, 40000 cells, with transition, j5 = 1400; _ : V2F model, o : Experiment.

been obtained similar to the ones described in section 2.3 for the Spalart-Allmaras

model.

The laminar separation bubble could not be predicted for the NLR7301 airfoil

with the Spalart-Allmaras model. Similar skin friction plots have been obtained for

computations with fixed transition and treating the flow fully turbulent. This might

be a consequence of the way transition is implemented in INS2D for this model or

because of fundamental differences of the one-equation model.

_.5 Collaboration with Boeing

In a cooperative study with Boeing-ISDS, St. Louis, (1997), a three element

airfoil, known as the MDA Three-Element High-Lift System (Fig. 6, Valarezo et al.,

1991), has been computed for the free stream condition: M = 0.2, Re = 9 × 106

and angle of attack a = 19 °. The flow has been computed as a fully turbulent flow.

The mesh, shown in Fig. 7, has been generated by Boeing-lSDS and consists of

about 135000 cells. It is split in 4 overlapping zones. The singular mesh points are

treated here as internal points. Each of the cells surrounding these nodes overlaps

with more than one cell from the neighboring mesh. These sources of errors, how-

ever, are kept small by using a very fine mesh and locating these nodes outside of

boundaries layers.

Computations have been carried out with two flow solvers: INS2D and the

Boeing-ISDS NASTD code, and two turbulence models: the V2F and the Spalart-

Allmaras model. First results of these computations are shown in Fig. 8 for the
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Station 1

FIGURE 6. Geometry of the MDA three-element high lift system and velocity
survey station locations.

FIGURE 7. Mesh around the slat and between wing and flap of the MDA high lift

system.
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velocity magnitude on station 1 and 2 with x/c = 0.45 and x/c = 0.85 respec-

tively. The flow is fully attached at these stations. The predictions accuracy at

these stations significantly influences separation downstream on the flap.

All three computations predict the velocity at these stations quite well. Major

differences can be observed in the velocity gradients near the wall and in the wake of
the lower boundary layer of the slat. Increasing the influence of the upper bound on

the time scale in the V2F computation by decreasing the coefficient a in Eq. (1) from
1 to 0.6 slightly improved the velocity gradient in the wake of the slat. Computations

are under way with fixed transition. This will avoid the need of an upper bound
for the time scale.

3. Future plans

The local refinement of the mesh for the NLR7301 airfoil in the region of the

laminar separation bubble and transition or the implementation of a suitable TVD

scheme into INS2D are expected to allow the use of smaller values for the compress-

ibility constant _ to avoid scaling errors introduced by the numerical dissipation.

The capability of the V2F model will be studied in further computations of the

MDA high lift system and in comprehensive comparison of results with experimental

data and computations with other models.

We plan to implement the V2F model into the NASA Ames OVERFLOW code
and to carry out computations of compressible flows. We also intend to work on

numerical issues for a stable implementation of the model in explicit Runge-Kutta

time-stepping schemes with multigrid techniques (Jameson et al., 1981).
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Advances in structure-based turbulence modeling

By S. C. Kassinos AND W. C. Reynolds

1. Motivation and objectives

Turbulent flows of importance in aircraft and propulsion system design involve

complex three-dimensional time-dependent mean flow, where the turbulence is often

subjected to very rapid deformation and strong mean rotation or curvature effects.

In these flows the structure of the turbulence plays an important role in determining

the transport of the Reynolds stresses, and because the turbulence structure takes

some time to respond to the imposed deformation, an eddy-viscosity representation

is not appropriate. The ability of aerospace engineers to predict these complex flows

is limited by the current state-of-the-art in one-point turbulence modeling, which

invariably relies on an eddy-viscosity approach.

The response of turbulence to the kind of deformation that is often encountered

in engineering applications (rapid rates and/or strong rotation) is described well by

Rapid Distortion Theory (RDT). RDT is a closed two-point theory, but engineering

models require one-point formulation. Therefore, what is needed is a one-point

model that matches eddy viscosity models for weak deformation rates and RDT for

rapid deformations.

The weakness of standard models is due to incomplete information and is par-

ticularly troublesome in flows with strong mean rotation. We have shown that it

is impossible to model the effects of strong mean rotation or curvature using only
the information found in the turbulent stresses themselves. The critical information

that must be added relates to the dimensionality of the turbulence structure (see

Kassinos & Reynolds 1994). We have introduced a number of one-point turbulent

structure tensors that carry this additional information and have derived their exact

transport equations (Kassinos _z Reynolds 1994). These tensors include the second-

rank structure dimenAonality Dij and structure circulicity Fij , and the third-rank,

fully symmetric, structure stropholysis Qi*jk- A detailed account of the role of these
tensors is given in Kassinos &: Reynolds (1994) and Reynolds & Kassinos (1995).

We have completed the formulation of a successful particle representation model

(Kassinos and Reynolds 1996) which has the correct viscoelastic character. This

model, which we have termed the Interacting Particle Representation Model (IPRM),

is a non-local method that can handle remarkably well almost any mean deforma-

tion of homogeneous turbulence. The IPRM is exact in the limit of RDT, which

it matches with no modeling. With relatively simple structure-based modeling of

the non-linear interactions, the IPRM is able to match eddy-viscosity theory for

weak deformations and to provide a reasonable blend between eddy-viscosity and
RDT for conditions that fall between the two limits. More details on the IPRM

formulation are given in Kassinos _z Reynolds (1996).

The IPRM is a non-local model, but for engineering use we need one-point for-

mulation. More recently our efforts have been focused on the development of a
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one-point structure-based model using the IPRM as the starting point. The present

study outlines the formulation for these more recent developments and gives repre-
sentative results where appropriate. An in-depth discussion of the IPRM and the

corresponding one-point model is given in a separate manuscript under preparation.

2. Accomplishments

In Section 2.1 we introduce notation and review the basic formulation of the

IPRM. Then in Section 2.2, we present the formulation of a one-point model that

follows directly from the IPRM. The IPRM emulates RDT exactly because the

non-local rapid pressure fluctuations can be evaluated exactly. This is not the

case for the one-point model, which requires additional modeling to deal with the
non-locality of the pressure fluctuations. Section 2.2 includes a discussion of this

additional modeling. In Section 2.3 we evaluate the one-point model for a number
of representative flows.

2.1 An Interacting Particle Representation Model (IPRM)

In a particle representation method, a number of key properties and their evo-

lution equations are assigned to hypothetical particles. The idea is to follow an

ensemble of "particles", determine the statistics of the ensemble, and use those as

the representation for the one-point statistics of the corresponding field. It is im-

portant to appreciate that these particles do not have to be physical elements of

fluid. The idea of representing the turbulent flow by a large number of particles,

each having its own set of properties, has been used over the past ten years by

the combustion community in the form of Lagrangian PDF methods (for example
see Pope 1994). In these traditional approaches a stochastic model is used, which

can be chosen so that upon taking moments of the governing stochastic evolution

equations one recovers one of the standard Reynolds stress transport (RST) models.
This approach, however, uses modeling where it is not required, i.e. in emulating
RDT. A more detailed discussion of the rapid PRM can be found in Kassinos &

Reynolds (1994); Vanslooten & Pope (1997) have recently used the ideas given there
to construct a PDF model that is consistent with RDT.

2.1.1 Particle properties

We start with a discussion of the properties assigned to each of the hypothetical
particles. The assigned properties are:

• V velocity vector

• W vorticity vector
• S stream function vector

• N gradient vector

• P pressure.

Here we consider a representation method using non-physical "particles" that corre-

spond most closely to a vortex sheet (or 1D-1C flow). The only axis of dependence

lies normal to the vortex sheet and parallel to the Ni vector, which provides a mea-

sure of gradients normal to the plane. The remaining vectors lie in the plane of
independence.
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2.1.2 Representations for one-point statistics

The Reynolds stress Rij = u_u_ is represented as

= (v vA = (v v, vA,

181

(1)

where the angle brackets denote averaging over an ensemble of particles and vi =

V//Vv/-_-_. Two one-point turbulent tensors that carry useful structure information

are the structure dimensionality and circulicity, defined by

, , F_i ' ,D'i = _.,i_.,i = _,,._i,." (2)

Here q_ is the turbulent stream function vector, which satisfies

and w_ is the fluctuation vorticity. In the IPRM formulation the structure tensors

are represented as

Dii = (S.S.NiNi) = (V2ninj) (4)

Fij = (NnNnSiSj) = (V2sisj) (5)

where ni = Ni/v/-_Nk and si = Si/v/-S_ • A consequence of the orthogonality

of the three vectors hi, vi, and si is that, for homogeneous turbulence, the three

second-rank tensors satisfy the constitutive equation

Rij + Dij + rij = q2_ij • (6)

Here q2 = 2k = Rii. For homogeneous turbulence Dii = Fii = q2, and it is possible

to normalize (6) so that

where

rij + dij + fij -- 6ij (7)

rii = Rii/q 2 dii = Dij/q 2 fij = Fij/q 2. (8)

" ' dii do _6'J, and f,j = fij _gij satisfyThe tensor anisotropies rij = rij - _ii, = -

+ a,j + Lj = o. (9)

In the inhomogeneous case additional terms appear in (6) and (9) (see Kassinos L:

Reynolds 1994).

2._.3 Emulation of the Rapid Distortion Theory

The evolution of the vector properties assigned to each particle are governed by

ordinary differential equations based on the Navier-Stokes equations. For example,

a kinematic analysis leads to the RDT evolution equation for N

IYi = -GkiNk , (10)
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which shows that N plays a role similar to that of the wavenumber vector k. Here

Gij = Ui,j is the mean velocity gradient tensor. The unit vector ni = Ni/Nv/-N-_k
satisfies

fii = -Gkink + Gt,nn_nmni . (11)

The PRM evolution equation for V is

_'i = -GitVk + 2Gkm
V_NkN_

g 2
(12)

The familiar Poisson equation for the rapid pressure is the basis for the analogous
definition

V,,,N k
P=-2Gkm N---"-Y- (13)

Using (12) and (13), one obtains

_'i = -GikVk - PNi (14)

by analogy to the fluctuation momentum equation under RDT.

2.1._ Cluster-averaged equations

The cluster-averaged implementation of the PRM offers a better computational

efficiency. The idea is to do the averaging in two steps, the first step being done

analytically. First, an averaging is done over particles that have the same n(t), fol-

lowed by an averaging over all particles with different n(t). The one-point statistics
resulting from the first (cluster) averaging are conditional moments, which will be

denoted by

and

'°= (v v, ln) D,j - (V n,njl.) = (V l.)n,nj

]n

F/j - (V_sisj[n). (15)

The conditionally-averaged stress evolution equation

Rti_ =-GikR_ -GjtR_'i + 2Gkm(Rimnknj + Rjmntni) (16)

is obtained by using the definition (15) along with (12). Note that (11) and (16)
ID

are closed for the conditional stress tensor R 0 and hi. That is, they can be solved
without reference to the other conditioned moments.

,_.1.5 Formulation of the nonlinear model

Whenever the time scale of the mean deformation is large compared to that of
the turbulence, the nonlinear turbulence-turbulence interactions become important

in the governing field equations. In the context of the Interacting Particle Repre-

sentation Model (IPRM), these nonlinear processes are represented by a model for

the particle-particle interactions.
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Direct numerical simulations (Lee & Reynolds 1985) show that under weak strain

the structure dimensionality Dij remains considerably more isotropic than does the

Reynolds stress Rij. This leads to counter-intuitive Rij behavior in axisymmetric

expansion flows (see Section 2.3.1), supported by experiments (Choi 1983). Hence

we modify the basic evolution equations (11) and (16) to account for these effects.

The resulting cluster-averaged evolution equations are

= n n G'_rnknrnihi -Gki t + (:7)

" c C2R', ".... /_k_(_j - n/nj)]Rij Ujka_ki

v ,. ,. (18)
+ [G_m + Gk,n](Rimnknj + Rjmnkni).

Note that the mean velocity gradient tensor Gij that appeared in (11) and (16) has

been replaced by the effective gradient tensors G_j and G_j. These are defined by

T 7"

Here rij = Rij/q 2 and dij = Dij/q 2 where q2 = 2k = Rii. The two constants are
taken to be C, = 2.2C_ = 2.2. The different values for these two constants account

for the different rates of return to isotropy of D and R. The time scale of the

turbulence r is evaluated so that the dissipation rate in the IPRM

e PaM = q2--rikdkmrmi (20)
7"

matches that obtained from a modified model equation for the dissipation rate,

= -Co(e2/q 2) - CsSpqrpqe - eft V/l'_ng/mdnm e. (21)

The last term in (21) accounts for the suppression of e by mean rotation. Here fti

is the mean vorticity vector, and the constants are taken to be

Co = 3.67 C, = 3.0 and Cn = 0.01. (22)

Mean rotation acting on the particles tends to produce rotational randomization

of the V vectors around the n vectors (Mansour et al. 1991, Kassinos & Reynolds

1994). The third (bracketed) term on the RHS of (18), is the slow rotational random-

ization model, which assumes that the effective rotation due to nonlinear particle-

particle interactions, ft_ = eipqrqkdkp, should induce a similar randomization effect

while leaving the conditional energy unmodified. Based on dimensional considera-

tions and requirements for material indifference to rotation (Speziale 1981, 1985),
we take

C_ = --8"59/* fpqnpnq, fl* = V/-_9/_,** fl i* = eipqrqkdkp. (23)
7"
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The rotational randomization coefficient Cr is sensitized to the orientation of the n

vector so that the slow rotational randomization vanishes whenever the large-scale
circulation is confined in the plane normal to n.

la
The pressure P is determined by the requirement that Rikn_ = 0 is maintained

by (17) and (18). This determines the effects of the slow pressure strain-rate-term
without the need for further modeling assumptions

VkNm (C v Jr C n) rmtdtk VkNm
P = -2Gmt N2 7" N 2

rapid slow

(24)

YJ._ A one-point R-D model

A one-point structure-based model for the deformation of homogeneous turbu-
lence can be derived directly from the IPRM formulation. At the one-point level,
additional modeling assumptions must be introduced in order to deal with the

non-locality of the pressure fluctuations. Here we restrict the formulation of the

one-point model to the case of irrotational deformation of homogeneous turbulence
and discuss briefly the more general case.

As a result of the constitutive equation (6), a structure-based one-point model
must carry the transport equations for only two of the three second-rank tensors.

Here we propose a model based on the Rij and Dij equations, which are the one-

point analogs of (17) and (18). Using the definitions (1) and (2) and the evolution
equations (17) and (18), and averaging over all clusters, one obtains

Dij = -DitG'_j - DjkG'_ i + 2q2 G_mZkmij.d -- 2GVkmMrnkij (25)

and

Rij = -G_kRkj - G_kRki

- Crhq [2Mijpq - (SijD_q - q2Zi_pq)] (26)

+ [c;m + alm](M, mki+ Mira,,).

Here G_ and Gi_. are as defined for the IPRM in (19), and Cr = 8.hf/*/r where fl*
is given in (23). The fourth-rank tensors

zdkrn = (V2ninjnknm)/q 2 and Mijp_ = (V2vivjnpnq) (27)

must be modeled. Note that Z is the fully symmetric, energy-weighted fourth

moment of a single vector, for which we have been able to construct a good model.

What is more, one can use an exact decomposition based on group theory (see

Kassinos & Reynolds 1994) to express Miipq in terms of fourth moments of a single
vector and the second-rank tensors Rij and DO:

Mipqj 1,2[ 7! 1= ,_,,qj - zz, , - +
Jr 4(6qj.Rip Jr 8ipD_j ) Jr 2(6qjD 0, Jr 8ipR_j)] •

(28)
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Note that in the presence of mean rotation (28) involves additional terms that

require modeling of the stropholysis effects (see section 3). Here

Z_pq = (V2vlvjvpvq)/q 2 and Zf.tjpq = (V2si,sjalosf)/q 2. (29)

Substituting (28) in (25) and (26) and using the definitions (8), one obtains

dij -djkG_i d " 2GVkmrkm(dii 2----- -- ikGkj + -- _6ij)

2 V_ _Gkmdrnk6i j + Ggk(6i j _ 4 .._-d,.,_rij) (30)

v d v f
+ (2G_m + Gk,,,)Zk,mj + G_,,,,Zr_kij - GkrnZmtci j

and
• 1 v
vii = _(Gmi + G_,j)(2dmi + rmi)

1 v+ _(Gm_+ G_.)(2a_¢ + r_i)
1 v 1 v

+ _Gjm(dmi -- rmi) + _Gim(dmj -- rmj)

1 . " 2rmi) 1 .+ _Gjm(dm, + + $Gim(dmj + 2rmj)

+ 2GVkmrtmrij 1 v v n (31)- _(G_i + Gji + G_ + Gi_)

+ (a_ + a_,_)(z[_.,i - zs,., - z/k.,i)

- _.f.,tz_,, - z_,, + }6._(.,j -/,,)
+ k_,J(', - h,)].

Closure of (30) and (31) in the irrotational case requires a consistent model for the

fully symmetric tensors Zi"jpq, Z_pq, and Z_pq. We have constructed a model for the

energy-weighted fourth moment of any vector ti in terms of its second moment tij

that allows the successful closure of (30) and (31) while maintaining full realizability.
The same model can be used for each of the three vectors vi, hi, and si and their

moments and has the general form

Ztjpq =(V_tltjtpt_)/q _ = C1 i o i + C2 i o t

+ C3 tot + C4 iot 2 + Cstot _ + Cst 2 ot _. (32)

Here i and t stand for 6ij and t 0 = (V2titJ/q 2 respectively. Extended tensor

notation is used in (32), where the fully symmetric product of two second-rank
tensors a and b is denoted by

ao b = aijbpq + aipbjq + ajpbiq + alqbjp + ajqb O, + apqbij . (33)

The coefficients C1-C8 are functions of the invariants of tij and determined by

enforcing the trace condition Z_jtk = tit, 2D realizability conditions for the case
when the vectors ti lie in a plane, and an important identity,

"ob+ ]Z b (34)Z _=_ioi-g, - ,
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which applies between the fourth moments of two vectors ai and bi when ai is

randomly distributed about bi. Kassinos & Reynolds (1994) gave an earlier Z

model that does not exactly satisfy (34). The new coefficients will be published
separately.

Next, we consider the performance of the Interacting Particle Representation
Model (IPRM) and the one-point R-D model for three cases of irrotational mean
deformation.

IL3 Evaluation of the R-D model for irrotational flows

In this section, the IPRM based on (17), (28), (21), and (29) and the one-point
model based on (21), (25), (26), and (32) are evaluated for several cases of irrota-

tional deformation of homogeneous turbulence. The examples considered here show

that, even with a relatively simple closure for nonlinearity, both models achieve re-

markably accurate predictions. Additional examples of the IPRM performance are

also given in Kassinos & Reynolds (1994) for RDT (large Sk/e), and in Kassinos

& Reynolds (1996) for the general deformation of homogeneous turbulence. The
evaluation of the complete R-D model (for combinations of mean strain and mean

rotation) will be given separately.

_.3.1 Irrotational azisymmetric strain

First we consider the performance of the IPRM and the R-D model for the case of

homogeneous, initially isotropic turbulence subjected to irrotational axisymmetric

mean deformation. The mean velocity gradient tensor is given by

Sij = -S/2 _ (35)

o -s/2

with S > 0 for contraction (nozzle flow) and S < 0 for expansion (diffuser flow).
In all the cases considered here, the axis of symmetry is taken to be xl and the

evolution histories are plotted against

where Sr,_x is the largest principal value of the mean strain tensor.

Azisymmetric Contraction

A first case of slow irrotational axisymmetric deformation of homogeneous, ini-
tially isotropic turbulence is considered in Fig. 1. The initial parameters in this

axisymmetric contraction flow (Sq2o/eo = 1.1) correspond to the slowest run in the

1985 simulations of Lee & Reynolds. The anisotropy evolution histories for _, d,
and f predicted by the non-local IPRM (solid lines) and the one-point r-d model

(dashed lines) are in satisfactory agreement with simulation results (symbols). Both

models predict decay of the turbulent kinetic energy k and dissipation rate e at the
correct rates (see Fig. ld).

A case of rapid axisymmetric contraction flow (Sq2o/e o = 110.0) is shown in Fig. 2.
Comparison of the models is again made with results from the simulations of Lee &
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FIGURE 1. Comparison of the one-point model predictions (dashed lines) with

the IPRM results (solid lines) and the 1985 DNS of Lee & Reynolds (symbols) for

axisymmetric expansion case AXK (Sq2/eo = 1.1). (a)-(c) evolution of the the

Reynolds stress, dimensionality, and circulicity anisotropies; 11 component (e),

22 and 33 components (v). (d) evolution of the normalized turbulent kinetic energy

(e) and dissipation rate (v).

Reynolds (shown as symbols). Note the excellent agreement of both the IPRM and

the one-point model with the simulation results. Rapid Distortion Theory (RDT)

predicts that under irrotational deformation r 0 d 0 a= = _(6ij - fij), and this result

is captured by both models.

A xisymmetric Ezpansion

Results for the case of irrotational axisymmetric expansion flow with an initial

Sq_/e o = 0.82 are shown in Fig. 2. The predictions of the IPRM (solid lines) and
those of the one-point model (dashed lines) are compared with the direct numerical

simulation (DNS) of Lee & Reynolds (1985), shown as symbols.

As discussed in Kassinos & Reynolds (1995), the axisymmetric expansion flows
exhibit counter-intuitive behavior, where a weaker mean deformation rate produces

a level of stress anisotropy Fii that exceeds the one produced under RDT. This
effect, which is also supported by the experiments of Choi (1983), is triggered by
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FIGURE 2. Comparison of the one-point model predictions (dashed lines) with

the IPRM results (solid lines) and the 1985 DNS of Lee & Reynolds (symbols)

for axisymmetric expansion case AXM (Sq2o/eo = 110.0). (a) evolution of the

Reynolds stress and dimensionality anisotropies and (b) evolution of the circulicity

anisotropy; 11 component (e), 22 and 33 components (,).

the different rates of return to isotropy in the r and d equations, but it is dynamically

controlled by the rapid terms. The net effect is a growth of I:# in expense of dij,

which is strongly suppressed. As shown in Fig. 2, the predictions of the IPRM and

one-point models are almost indistinguishable from each other, and both are able

to capture these intriguing effects quite accurately. The predictions of both models

for the evolution of the normalized turbulent kinetic energy and dissipation rate are

also in good agreement with the DNS.

The ease of irrotational axisymmetric expansion flow with rapid strain (Sq2o/% =

82.0) is considered in Fig. 4. The agreement between the predictions of the IPRM

(solid lines) and those of the one-point (dashed lines) with the simulation results
(symbols) is excellent. Also note the drastic difference in the anisotropy evolution

histories for _ij and dij between the slow case (Fig. 3) and the rapid case (Fig. 4)

and how these effects are captured by both models.

Plane Strain

A third case of irrotational deformation is considered in Fig. 5, where we show

results for initially isotropic homogeneous turbulence subjected to plane strain. The

mean deformation is in the x2-x3 plane according to

(°°i)Sij = 0 -S . (36)
0 0

Fig. 5 shows evolution histories for the three tensor anisotropies, and for k and

e, for a case of weak irrotational plane strain (Sq2o/eo = 1.0). Again, the IPRM
predictions are shown as solid lines and those of the one-point model as dashed
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FIGURE 3. Comparison of the one-point model predictions (dashed lines) with

the IPRM results (solid lines) and the 1985 DNS of Lee & Reynolds (symbols) for

axisymmetric expansion case EXO (Sq_/eo = 0.82). (a)-(c) evolution of the the

Reynolds stress, dimensionality, and circulicity anisotropies; 11 component (e),

22 and 33 components (v). (d) evolution of the normalized turbulent kinetic energy

(o) and dissipation rate (v).

lines. Comparison is made with the 1985 DNS of Lee & Reynolds (symbols). Note

how the predictions of the one-point model are practically indistinguishable from

those of the IPRM and how both models are in excellent agreement with the DNS

results for all predictions.

The case of homogeneous, initially isotropic turbulence subjected to rapid irro-

rational plane (Sq2o/eo = 154.0) is shown in Fig. 6. Comparison is made with case
PXF from the DNS of Lee & Reynolds (1985). Both models are in excellent agree-

ment with the simulation results (symbols). A comparison of the rapid plane strain

case (Fig. 6) to the slow plane strain case (Fig. 5) shows that, as in the axisymmet-

ric expansion flow, the rate of straining has a strong effect in the evolution of 7:i1

and d_j, and the models are able to capture this.
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FIGURE 4. Comparison of the one-point model predictions (dashed lines) with

the IPRM results (solid lines) and the 1985 DNS of Lee & Reynolds (symbols) for

axisymmetric expansion case EXQ (Sq_/eo = 82). (a) evolution of the Reynolds
stress and dimensionality anisotropies, (b) evolution of the circulicity anisotropy;

11 component (e), 22 and 33 components (v).
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FIGURE 5. Comparison of the one-point model predictions (dashed lines) with

the IPRM results (solid lines) and the 1985 DNS of Lee & Reynolds (symbols) for

plane strain case PXA (Sq_/eo = 1.0). (a)-(c) evolution of the the Reynolds stress,
dimensionality, and circulicity anisotropies; 11 component (e), 22 component (m),

and 33 component (v). (d) evolution of the normalized turbulent kinetic energy (o)

and dissipation rate (v).
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FIGURE 6. Comparison of the one-point model predictions (dashed lines) with

the IPRM results (solid lines) and the 1985 DNS of Lee & Reynolds (symbols)

for plane strain case PXA (Sq2o/eo = 154.0). (a) evolution of the Reynolds stress

and dimensionality anisotropies, (b) evolution of the circulicity anisotropy

11 component (t), 22 component (11), and 33 component (v).

3. Remaining issues and future plans

The decomposition given in (28) is valid only under irrotational mean deforma-

tions. Under more general modes of deformation, which include combinations of

mean strain and mean rotation, reflectional symmetry is broken and stropholysis

effects must be included in (28). The exact form of this decomposition under these

more general conditions is given by

(37)

The stropholysis Q,i_k is defined by (see Kassinos & Reynolds 1994)

Qijk = _[Q,.ik + Q_ki + Qkij + Q_kj + Q.iik + Qk.Ti]

where

Q,j - k

The IPRM representation of Qijk is given by

(38)

(39)

Q,.ik = (V2sivjnk) • (40)

A stropholysis model must satisfy some important constraints. The obvious ones are

the requirements that Qi*jk vanishes under the contraction of any two of its indices,
that it is fully symmetric, and that it vanishes whenever any two of the three vectors

in the basic triad (v, n, s) are randomly distributed around the third (for example,
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in irrotational deformations). In addition, when any of the three tensors r, d, or f is

two-component (2C), the stropholysis must reduce to a special form (see Kassinos &

Reynolds 1994). This last of the three constraints is the most challenging to satisfy.

What complicates the issue of stropholysis modeling is the fact that whenever any

of the three tensors becomes 2C, the three energy-weighted fourth moments (Zi_pq ,

Zijpqd , and Z_pq) must also reduce to special forms. To maintain realizability the Z

models must not only reduce to the correct 2C forms, they must also do so at the

correct rate in conjunction with the Q* model. It seems then that the stropholysis

and fourth-moment models cannot be constructed completely independently from

each other. This fact is the single most complicating issue in the context of an R-D
model.

We are currently focusing on the construction of a consistent Z and Q* models

that will allow closure of the one-point R -D model for the general case, while

maintaining full realizability. At the same time we are investigating extensions of

the IPRM and one-point models for inhomogeneous flows.

REFERENCES

BARDINA, J, FERZIGER, J. H., & REYNOLDS, W. C. 1983 Improved turbulence

models based on large eddy simulation of homogeneous, incompressible, turbu-

lent flows. Report TF-19, Thermosciences Division, Department of Mechanical

Engineering, Stanford University.

CltoI, KWING-SO. 1983 A study of the return to isotropy of homogeneous turbu-

lence, Technical Report, Sibley school of Mechanical and Aerospace Engineer-

ing, Cornell University, New York.

KASSINOS, S. C. AND REYNOLDS, W. C. 1994 A structure-based model for

the rapid distor_ion of homogeneous turbulence. Report TF-61, Thermosciences

Division, Department of Mechanical Engineering, Stanford University.

KASSINOS, S. C. AND REYNOLDS, W. C. 1995 An extended structure-based

model based on a stochastic eddy-axis evolution equation. Annual Research

Brief_ 1995, Center for Turbulence Research, NASA Ames/Stanford Univ. 133-
148.

KASSINOS, S. C. AND REYNOLDS, W. C. 1996 An Interacting Particle Rep-

resentation Model for the Deformation of Homogeneous Turbulence. Annual

Research Briefs 1996, Center for Turbulence Research, NASA Ames/Stanford
Univ. 31-53.

REYNOLDS, W. C. AND KASSINOS, S. C. 1995 A one-point model for the evolution

of the Reynolds stress and structure tensors in rapidly deformed homogeneous

turbulence. Proc. Roy. Soc. London A. 451(1941), 87-104.

LEE, M. J. _z REYNOLDS, W. C. 1985 Numerical experiments on the structure of

homogeneous turbulence'. Report TF-24, Thermosciences Division, Department

of Mechanical Engineering, Stanford University.



Advances in s_ructure-based modeling. 193

MANSOUR, N. N., SHIH, T.-H., & REYNOLDS, W. C. 1991 The effects of

rotation on initially anisotropic homogeneous flows. Phys. Fluids A. 3, 2421
2425.

POPE, S. B. 1994 On the relationship between stochastic Lagrangian models of

turbulence and second-moment closures. Phys. Fluids. 6, 973-985.

SPEZIALE, C. G. 1981 Some interesting properties of two-dimensional turbulence.

Phys. Fluids. 24(8)_ 1425-1427.

SPEZIALE, C. G. 1985 Modeling the pressure-velocity correlation of turbulence.

Phys. Fluids. 28(8), 69-71.

VANSLOOTEN, P. R. _ POPE, S. B. 1997 Pdf modeling for inhomogeneous turbu-

lence with exact representation of rapid distortions. Phys. Fluids. 9(4), 1085-

1105.





Center for Turbulence Research
Annual Research Briefs 1997

195

Incorporating realistic chemistry
into direct numerical simulations of

turbulent non-premixed combustion

By W. K. Bushe, R. W. Bilger 1 AND G. R. Ruetsch

1. Motivation and objectives

Combustion is an important phenomenon in many engineering applications. Com-

bustion of hydrocarbons is still by far the most common source of energy in the

world. In many devices of interest--such as in furnaces, diesel engines and gas

turbines--the combustion takes place in what is known as the "non-premixed"

regime. The fuel and oxidizer are initially unmixed, and in order for chemical reac-

tion to take place, they must first mix together. In this regime, the rate at which

fuel and oxidizer are consumed and at which heat and product species are produced

is, therefore, to a large extent controlled by mixing.

In virtually all engineering applications of combustion processes, the flow in which

the combustion takes place is turbulent. Furthermore, the combustion process it-

self is usually described by a very large system of elementary chemical reactions.

These chemical kinetic mechanisms are usually extremely stiff and involve, for longer

chain hydrocarbon species, hundreds of chemical species. The governing equations

describing the chemical composition are closely coupled to those describing the

turbulent transport. Also, the chemical reaction rates are non-linear and strongly

depend on the instantaneous composition and temperature.

1.I Modeling turbulent combustion

In order to model turbulent combustion, one must circumvent what is known as

the "chemical closure problem". The chemical source term in the Reynolds averaged

species transport equation must be modeled. Several models have been proposed

to achieve chemical closure, but many of these are only applicable to limited flow

or chemistry regimes. For example, in the fast chemistry limit, the chemistry is

assumed to be infinitely fast in comparison to the turbulent mixing process (Bil-

get, 1980), which completely neglects the influence of finite rate chemistry on the

combustion process. Laminar flamelet models (Peters, 1984) are only applicable in

what is known as the "flamelet regime", where the chemical reactions take place

along an interface which is thinner than the smallest turbulent length scale. The

PDF model (Pope, 1985), where the transport equation for the joint probability

density function of the composition vector is solved, is only practical for systems

with very simple chemical kinetic mechanisms--such as reduced chemical kinetic
mechanisms.

1 The University of Sydney, Australia
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A new method for closing the chemical source term was recently proposed in-

dependently by Klimenko (1990) and Bilger (1993a, 1993b). In the Conditional

Moment Closure (CMC) method, the transport equations are conditionally aver-

aged, with the condition being some variable on which the chemical reaction rates

are known to depend. For non-premixed combustion, an appropriate conditioning

variable is the "mixture fraction". This is a conserved scalar, suitably defined to

have a value of zero in pure oxidizer and unity in pure fuel.

The average of the mass fraction Yt of a particular species 1, conditional on the

mixture fraction Z having some value 7, is

Q,(x,. t; 7) -- (rt(xk. t)lZ(,k, t) = 71. (1)

For a flow in which the velocity and mixture fraction fields are both isotropic and

homogeneous, the conditionally averaged transport equation for ]I; becomes (Smith,

1995)

°Or(7) = = 7) + 02QI IT) OZ OZ

=7), (2)Ot

the right-hand side of which has two unclosed terms: the conditionally averaged
reaction rate and a mixing term in which appears the conditionally averaged scalar

I_ og oz 17,dissipation, _ _ _-_7,- = q/.
There are several models available for the scalar dissipation, such as presumed

PDF models (Mell, et al., 1994), and mapping closure models (Bushe, 1996). Clo-
sure of the reaction term can be achieved through the first order CMC hypothesis:

that the conditional average of the chemical source term of some species I, which

is a function of the composition vector Yj and the temperature T, can be mod-

eled by evaluating the chemical reaction rates using the conditional averages of the

composition vector Qj and temperature (TIZ = 7). Thus,

(&(Yj,T),IZ: 7>_ _,(Q+,(TIZ = 7)). (3)

Various refinements to the closure hypothesis for the chemical reaction term have

been proposed, using either a second conditioning variable (Bilger, 1991; Bushe

1996) or a second moment (Li & Bilger, 1993; Smith 1996), which are intended to

extend the validity of the closure hypothesis to account for ignition and extinction

phenomenon and to improve the performance of the model for chemical reactions

where the activation energies are very large.

1.1_ Validation of turbulent combustion models

Work attempting to improve and validate models for turbulent combustion has
been hampered by a lack of adequate experimental results. Only recently have

experimental techniques been devised which might provide the necessary insight;

these experiments methods are still quite limited in the information they provide

and are also extremely expensive and difficult to perform.
As an alternative to experiments, Direct Numerical Simulation (DNS) of the

governing equations can be performed; however, to date such simulations have been
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limited by available computer resources--and by the complexity and stiffness of the

associated equations--to simple chemical kinetic models (Vervisch, 1994).

With the advent of new techniques for the systematic reduction of chemical ki-
netic mechanisms, new reduced kinetic mechanisms are now available which are still

relatively simple, but which retain sufficient complexity from the original mecha-

nism to provide good predictions of flame structure and reaction rates. In a previous

study which implements such a reduced mechanism in DNS (Swaminathan and Bil-

get, 1997a & 1997b), the flow was assumed to be incompressible, so that effects of

heat release on the flow were neglected. While the results of this study have been

encouraging, validation of the CMC method against this constant property DNS

data is not completely convincing. There is clearly a need to obtain DNS data

using realistic chemical kinetics in turbulence where effects of the heat release on
the flow are included.

In the present study, a reduced kinetic mechanism has been incorporated into a

fully compressible DNS code. The results of the simulations will be used for the

validation and, hopefully, improvement of current combustion models such as the
CMC model described above.

2. Accomplishments

2.1 Chemistry

2.I.1 Original kinetic mechanism

The chemical kinetic mechanism that was used in the simulations is one repre-

sentative of the oxidation of a methane/nitrogen mixture by an oxygen/nitrogen
mixture. There are three reactions in the mechanism; the first two represent the

oxidation of the methane (Williams, 1991), and the third represents the formation
of nitric oxide. The reactions are:

Fuel + Ozi _ Int + Prod

Int + Ozi --* 2Prod

N2 + Ozi --* 2NO

(:)

(ii)

(Iii)

where Fuel is CH4, Ozi is 02, Int is (_H2 + 2CO), and Prod is ('_H20 -F 1CO2).
Rates for reactions (I) and (II), expressed in terms of mass fractions, are given

by:

mol . cm 3 (44___4K)&I = 1375 g-'5:'s'__-;-5 P Ta exp YF_,zYrl (4)

and

D1l = 7.19 x 1016 K°'8 ' cm6 p2 T-O.SyoxiYHFM" (5)
g2s2

The mass fraction of Hydrogen, which appears in the both of these reaction rate

expressions, is given by the steady state approximation:

['11 v3 _I/2

Yn=O.136e(a_)O[1-exp(-lO-'SK-STS)] tx°xiJ1"'l (6)
YProd
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O = exp {_4.26 × lO_lOK_a Ta YF._ (40_._1K))exp -- . (7)
Ozi

The influence of the enhanced third body M, appearing in the rate expression for

reaction II, is

FM = 0.014 + 0.392YF,,d -- O.O02Yozi + O.072YI,,t + O.167Yprod. (8)

The rate expression for reaction III is obtained by placing the oxygen free radical

in the simple Zel'dovich mechanism

O+N2 -* NO+N

N+O_ _ NO+O

in steady state. The concentration of the oxygen free radical is estimated by assum-

ing it is in partial equilibrium with the hydrogen and hydroxyl free radicals. The

resulting rate expression is

&Ill 5.60x1011m°l'cm3 ( 45_OK ) YprodY_I YN2= p exp (9)
g .s Y_nt

The rate expressions in Eqs. (4), (5) and (9), each give the reaction rates in

units of mol/g,nizt,re/S. The rates of change of mass fractions can be calculated by

multiplying the reaction rates by each participating species molecular weight,

&F,_ = -16 g/mol _01

&o_i = -32 g/tool (&l + ¢btl + &m)

64
_I,. = -5- n/mot (_,- _,,)

80 g/mol (wl + 2&II)
&Prod = -_

&NO= 30 g/mol (2&m).

The rate of change of energy due to chemical reaction is calculated by multiplying
the reaction rates by each reaction's enthalpy of formation,

&_ = -291 kJ/mol 0) I -- 511 kJ/mol _II + 181 kJ/mol &III.

2. I._ Simplifying the mechanism

In order to reduce computational costs and to make the mechanism more tractable

for modeling purposes, the reaction rate expressions were simplified.
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The equation for O, Eq. (7), contains the function

f(T) = 4.26 x lO-l° Ta exp (40-_ 1) (10)

which, over a temperature range from 1200 to 2000 K, is well approximated as

being constant--as seen in Fig. l(a). This was taken to be 22.1, which, over that

temperature range, predicts Eq. (10) within 15%.

The expression for reaction I, Eq. (4), contains the function

g(T) =1375 Taexp (-44_4) . (11)

This function can be approximated by

g(T)_l.57x101aexp (9__.24), (12)

as shown in Fig. l(b), also to within 15% over the range of 1200-2000K.

The expression for the hydrogen free-radical mass fraction becomes

YH = 0.136 exp (307 K 22.1_JYf"_l_

3 1/2

(Yo:ir].,)

• [1- exp (-10-'SK -_ Ts)] rprod

(13)

and the expression for the reaction rate of reaction I becomes

(oi=1.57x10 x4 m°l'crna ( 96TK )g_. s p exp YF,etYH (14).

2. I.3 Non-dimensionalizing the mechanism

The DNS code for which the mechanism was being modified uses the constant

pressure specific heat Cp, the ratio of specific heats 7, and the speed of sound to

non-dimensionalize the governing equations. Thus, Cp and 7 are implicitly assumed

to be constant. It is also implicitly assumed that the molecular weights of the fuel

and oxidizer streams are equal.

In order to remain consistent with previous implementations of this mechanism

(Swaminathan & Bilger, 1997a & 1997b), it was decided that the fuel stream would

consist of 15% methane (by mass), balance nitrogen, and the oxidizer stream would

consist of 30% oxygen, balance nitrogen. These mixtures have molecular weights

of 26.2 g/mol and 29.2 g/rnol, respectively. The constant molecular weight of both

streams, for the purposes of the DNS code's calculations, was taken to be 28 g/mol.

The initial temperature of both streams was taken to be 300K.
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In choosing a constant value for the specific heat, care had to be taken to ensure

that the maximum temperature would be appropriate for the flame being modeled.

The adiabatic flame temperature for a stoichiometric mixture of the two streams

described would be 2049K. However, the specific heat is an increasing function with

increasing temperature, and in a non-premixed flame, the maximum temperature

is limited by the diffusion of heat away from the reaction zone. Thus, choosing a
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constant Cp such that the adiabatic flame temperature would be matched would
result in an under-prediction of the maximum flame temperature in the non-pre-

mixed flame. A value for Cp of 1.30 J/(g. K) was chosen, which yields an adiabatic
flame temperature of 2228K. With the ideal gas constant,

R = 8.314 J/(mol. K) = 0.297 J/(g. K),
28 g/mot

this gives 3' = 1.3. Choosing an initial temperature and a value for the specific

heat fixes the reference temperature, density, and speed of sound which are used to

non-dimensionalize the quantities in the reaction rate expressions.

2.2 One-dimensional simulations

The chemical kinetic mechanism described above was incorporated into a DNS

code which solves the governing equations for fully compressible turbulent flow

(Ruetsch, 1995), based on the algorithms of Lele (1992) and Poinsot and Lele (1992).
In order to test the implementation of the mechanism and to provide initial con-

ditions for simulations with turbulent flow fields, the code was run for a simple,

one-dimensional problem.

2.2.1 Initial and boundary conditions

In order to ensure that the pressure in the domain remains constant, fluid must
be allowed to leave the domain. An additional constraint is that the reaction rates

at the boundaries must be zero; otherwise, the boundary conditions are ill-posed.

Also, because the chemical kinetic rates depend on the hydrogen free radical concen-

tration, the mechanism cannot auto-ignite; if the flow is initially unreactive, it will

remain so; therefore, the fields must be initialized such that at least some chemical

reaction is already underway.

Partially non-reflecting outflow boundary conditions (Poinsot & Lele, 1992) were
chosen for both boundaries in the one-dimensional simulations.

The species mass fractions were initialized by first defining the mixture fraction
as a linear combination of mass fractions such that the chemical source term in its

transport equation is zero:

60YF_,et -- 60Yogi - 36YProa - 32Y_o + 18
Z = 27 (15)

The mixture fraction was initialized with the analytical solution to the diffusion

equation for a semi-infinite slab of fuel mixing with a semi-infinite slab of oxidizer,

Z(x,t)=erf(-_), (16)

at an arbitrary time, chosen such that the reaction zone would be sufficiently re-

solved with the available number of grid points. Mass fractions for each species

were then calculated by assuming that an arbitrary fraction of moles for each of
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reaction I and II had reacted to completion. This assumption also allowed for the

calculation of the heat released as a function of mixture fraction_ from which the

temperature field can be calculated. The initial pressure was assumed constant at

1 atm.--which corresponds to 0.796 non-dimensional pressure units--from which

the density could be calculated. The initial velocity was zero.

_.IL_ Broadening the reaction zone

The region in which the chemical reactions are significant--referred to as the

"reaction zone"--for the mechanism describe above was found to be very narrow.
In order to make the reaction zone broader, reaction rate I and the exponent in e of

Eq. (7) are divided by a constant of 22.8. This has been shown in previous studies

(Swaminathan & Bilger, 1997a & 1997b) to broaden the reaction zone sufficiently

to allow the reactions to be easily resolved by DNS without substantially altering
the structure of the flame. This is shown in Fig. 2, where the results of a very

well resolved simulation without the broadened reaction zone are compared to those
from a simulation with the broadened reaction zone. The two simulations had the
same initial conditions and were each run for 100 non-dimensional time units.

Despite the changes to the mechanism, it can be seen in Figs. 2(a) and (b) that

the profiles of the mass fractions of the Fuel, Intermediate, and Product are only

slightly modified from those given by the original mechanism. Only the fraction of
Oxidizer that leaks through the reaction zone to the rich side of the flame is signif-

icantly altered by the modification. Figure 2(c) compares the estimated hydrogen

radical concentrations. It is clear that, without the modifications to the mechanism,

it would be very difficult to resolve the sharp drop in Hydrogen radical mass fraction

at the stoichiometric mixture fraction of 1/3. However, with the modifications, that

sharp drop disappears, and the hydrogen free radical mass fraction can be resolved

with far fewer points. The significant difference in magnitude of the reaction rate

for reaction I, shown in Fig. 2(d) is almost entirely attributable to that reaction
having been slowed by a factor of 22.8. It should be noted that this reaction, as

with the hydrogen free radical mass fraction, would severely constrain the resolution
of the flame if the modifications were not included--so much so that DNS includ-

ing turbulence would hardly seem possible without using the modifications. The

influence of the modifications on the reaction rates of reactions II and III, shown

in Figs. l(e) and (f), is primarily to also broaden the region of mixture fraction

in which they are significant, and they also seem to ease resolution constraints by

making the rates more smooth functions of mixture fraction.

,_.3 Two-dimensional simulations

Once tests of the newly implemented kinetic mechanism had been completed, the

addition of turbulence in two-dimensions was undertaken. This was seen primarily

as being a means of establishing what turbulence parameters would be appropriate

to provide adequate three-dimensional simulation results for modeling purposes;

however, it was anticipated that these two-dimensional tests would also provide

results from which direct insight could be gained.
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2.3.1 Initial and boundary conditions

The same constraints on the initial and boundary conditions described for a one-

dimensional domain in Section 2.2.1 apply to two- and three-dimensional domains.

This means that at least one of the boundaries in a two- or three-dimensional domain

must allow for outflow. Also, the reaction rate at an outflow boundary must be zero.

The mass fraction, temperature, density, and velocity fields were initialized by

using the stabilized one-dimensional flame solution described in Section 2.2. By

placing a stable flame in the middle of the two-dimensional domain, the time until

the reaction zone (the region of the flow in which chemical reaction takes place)
reached a boundary could hopefully be maximized.

Initial turbulent velocity fluctuations were obtained by using a pseudo-spectral

code to solve the governing equations for incompressible flow and forcing a periodic,

three-dimensional flow field on a 120 a grid from quiescence until its statistics became

stationary (Ruetsch & Ferziger, 1997). For the two-dimensional simulations, a slice

of the three-dimensional flow was extracted and the components of the velocity that

did not satisfy continuity were discarded. Two identical slices were placed next

to ea_zh other to fill out the 120 x 240 domain. At the boundaries, the turbulent

fluctuations were filtered to zero to avoid potential generation of unphysical vorticity

at the boundaries. The turbulent fluctuations were divided by the density so as to

satisfy

Ox_ -- 0,

This rescaling of the turbulent fluctuations was performed to avoid the generation

of large, unphysical pressure waves in the flame. It should be noted that this means

the vortieity inside the flame is initially much higher than elsewhere; however, since

the viscosity in that region is also much higher, the vorticity inside the flame decays

very quickly. The resulting turbulent velocity field was added to the one-dimen-

sional flame velocity field.

The initial, cold velocity field had a Taylor Reynolds number of 35. The dis-

sipation length scale was 0.133 box lengths and the dissipation Reynolds number

was 107. In order to avoid forcing the turbulence through the reaction zone, the

turbulence was allowed to decay.

2.3.2 Re_ult_

In extracting statistics such as PDFs or ensemble averages from DNS results,

it is usually necessary to make use of isotropy in the turbulence. In an isotropic

flow, ensemble statistics can be approximated by averaging points along directions

of isotropy. For the results that follow, it was necessary to neglect the effect that

the anisotropy in the mixture fraction field might have in order to obtain converged

statistics. Previous DNS (Mell et al., 1994) and experimental (Bilger, 1993b) stud-

ies of mixing layer flows, such as the one used in this study, have shown that the

inhomogeneity in the mixture fraction has only a slight effect on conditional statis-
tics.

The evolution of the Probability Density Function (PDF) of the mixture fraction

as a function of (non-dimensional) time is shown in Fig. 3. The PDF represents
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the entire flow field. The delta functions at Z = 1 and Z = 0 decay with time

as one would expect. There is no evidence of a peak in the PDF between the two
delta functions at Z = 1 and Z = 0, as has been seen for similar flows (Broadwell

& Mungal, 1991). This is likely because there is no velocity difference between
the fuel and oxidizer streams which would lead to coherent structures created by

shear between the streams. In the absence of such coherent structures, the effect of

turbulence on the mixing process would appear to be essentially random.

In Fig. 4(a), the PDF of mixture fraction at 100 non-dimensional times is com-

pared to the beta PDF (Cook & Riley, 1994), evaluated using the measured mean

(0.47) and variance (0.14) of mixture fraction; the beta PDF is

P(Z) = Z"-'(1 - Z)b-' r(a + b)
r(a)r(b)'

(17)

where

o: k Z 2 -

The beta PDF compares well to the PDF measured from the DNS, with two

notable exceptions. For Z < 0.25 and Z > 0.75, there appears to be some kind
of structure in the DNS PDF. This could be a result of there being an inadequate

number of points in the domain to obtain converged statistics; however, it is curious

that these structures appear at these values of Z--there are considerably more

points with these values of Z than there are for 0.25 > Z > 0.75, where the DNS
PDF doesn't exhibit such structure. The second difference in the two PDFs is more

subtle. The PDF given by the DNS seems to decrease from Z = 0.2 to Z = 0.7.
The beta PDF reaches a minimum at Z = 0.47. This may be indicative of the

influence of variable density on the PDF of mixture fraction.
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In Fig. 4(b) the conditional average of the density for the entire domain is com-

pared to the density profile (in mixture fraction) of the one-dimensional flame that

was used to initialize the two-dimensional simulation. Variations from the condi-

tional average of the density were quite small--the conditional variance of the den-

sity was of the order 10-4--nevertheless, there is a discernible difference between

the two curves. This is likely caused by the straining of the flame by the velocity

field producing regions of local extinction--regions along the flame front where the

rate of diffusion of products and heat away from the reaction zone surpasses the

reaction rates and the reactions are effectively quenched.

The beta PDF in Fig. 4(a) seems to cross the DNS PDF at a mixture fraction

of about 0.35. At about this same value of mixture fraction, the density reaches a

minimum. This appears to support the notion that the difference in the two PDFs

is attributable to the variation in density.

Scatter plots of the Intermediate, Product, and NO mass fractions as functions

of the mixture fraction after 100 time units, are shown in Fig. 5. Also shown is the

temperature. Figure 5(a) provides further evidence that the flame has undergone

local extinction. Where at a mixture fraction of around 0.4, Yl,t has fallen below

0.015, it seems likely that reaction I has essentially stopped providing fresh new

Intermediate, and reaction II has then depleted the remaining Intermediate and

likely stopped as well. Figures 5(b) and (d) show not only how the temperature

is a very strong function of the Product mass fraction for unity Lewis number,

but also how the temperature and product mass fractions are affected by the local

extinction phenomenon evident in Fig. 5(a). Figure 5(c) reveals just how challenging

the chemical closure problem can be when the activation energy of a participating

chemical reaction is very large as is the case with reaction III. There is clearly
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a great deal of scatter in the NO mass fraction around its conditional average--

considerably more than in the temperature--so that the single conditional average

would be a poor approximation for the NO mass fraction.

Contour plots of the three reaction rates are shown in Fig. 6. At this time, a region

of local extinction is just being re-ignited, with reactions I and II having peaks at

(x, y) = (10, 4) and (9,4). Reaction III, in the region that has been extinguished,

has essentially stopped. This is a result of the strong temperature dependence of
the reaction rate.

In Fig. 7, the conditionally averaged reaction rates are compared to those pre-

dicted by evaluating the reaction rates with the conditionally averaged mass frac-

tions, temperature, and density. This is a test of the validity of first order CMC

hypothesis, given by Eq. (3). The reaction rates for reactions I and III are predicted

to within 20%, and that for reaction II is predicted to within 10%. It would appear

that first order closure would be adequate for predicting the mean reaction rates.

This is especially surprising in the case of reaction III, which has an extremely large

activation energy and would be expected to require some correction for fluctuations

in the temperature around its conditional average.
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3. Future work

The simulation results presented in Section 2 appear to indicate that the imple-

mentation of the chemical kinetic mechanism has been successful. Unfortunately,

the conditional statistics extracted from the small two-dimensional domain are in-

adequately converged to be of significant use in the validation of the CMC model.

It has become clear that results in the full, three-dimensional domain will have to
be obtained.

The effect of heat release from a premixed flame on a turbulent flow is more

significant than in a non-premixed flame since the heat is released in a thin front,

which propagates through the fluid. The use of constant property DNS for validation

of models of premixed combustion is thus even more questionable than for models
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of non-premixed combustion. For this reason, a new project will also be undertaken

in which simulations of a premized flame will be performed, using the same code, for
the purpose of providing validation for models of premixed turbulent combustion.
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Effects of small-scale structure

on turbulent mixing

By G. R. Ruetsch AND J. H. Ferziger

1. Motivation and objectives

Mixing at small scales in turbulent flows is a process that is important to many

applications, including geophysical flows, pollutant dispersion, and reacting flows.

In reacting cases, mixing by small scales plays a crucial role in bringing fuel and

oxidizer species together, thus affecting the global burning rate.

In 1949, Batchelor and Townsend (1949) examined the phenomenon of intermit-

tency in turbulence, showing that the energy associated with the small scales of
turbulence occurs in isolated regions. Kuo and Corrsin (1971, 1972) further in-

vestigated the nature of small-scale turbulence and suggested that the small-scale
vorticity structure is cylindrical rather than sheet-like as suggested by Betchov

(1956) and observed by Schwarz (1990). Through the use of direct numerical sim-
ulations, many of the questions regarding the nature of the small-scale structures

have been answered. The simulations of Siggia (1981), Kerr (1990), and Vincent and

Meneguzzi (1991), among others, indicate that the intense regions of vorticity do

occur in cylindrical or tube-like structures. This result seemed counterintuitive as

the predominance of points in the flow exhibit two positive principal rates of strain,

as indicated by Betchov. The simulations of Ashurst et al. (1987) further confirmed

this tendency; it was observed that vortex tubes tend to align with the positive in-

termediate principal rate of strain. Small-scale vortex structures resembling sheets

can be found in these simulations if one considers less intense regions of vorticity
(She and Jackson 1990, Ruetsch and Maxey 1991). It was further determined that

the intense vortex tubes and relatively moderate sheets are not unrelated: the vor-

tex tubes are generated by roll-up of the less intense vortex sheets (Ruetsch and

Maxey 1992, Vincent and Meneguzzi 1994).

In addition to the small-scale features of the velocity field, passive scalars also
exhibit localized regions of intense gradients, which form due to the alignment with

the most compressive principal rate of strain (Kerr 1990, Ashurst et al. 1987).

A configuration which has received recent attention is that of a uniform tempera-

ture gradient, which Corrsin (1952) suggested would be maintained in stationary

isotropic turbulence. Such a configuration is attractive for numerical simulations as

it can provide ample data for statistical analyses. Simulations concerning the struc-
ture and evolution of a small-scale passive scalar field have been performed during

the evolutionary phase (Ruetsch and Maxey 1991, Ruetsch and Maxey 1992), and

the probability density functions of various quantities related to the passive scalar

have also been examined (Pumir 1994a and 1994b, Holzer and Siggia 1994, Overholt

and Pope 1996, Jaberi et al. 1996). Recent experimental studies of the uniform

temperature gradient configuration have also been performed providing probability
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density functions and related statistics (Tong and Warhaft 1994), and an asymp-
totic self-similar solution for the one-point probability density function equation has
been presented (Ceil et al. 1996).

While there have been many investigations regarding small-scale structure and

dynamics, the contribution of the small-scale structure to global turbulent prop-

erties has not been established. There have been several investigations regarding
the contribution of the energy associated with small scales to global budgets: the

dissipation at and around the vortex tubes has been examined (Ruetsch and Maxey

1991), and by selectively filtering Fourier coefficients of the turbulent velocity field,

the contribution of various scales to various statistics has been determined (She et
al. 1988). However, these studies address the energy content of the small scales.

In the present study we wish to address a more subtle issue, that of how the slruc-

ture of the small scales affects the flow, most importantly its mixing characteristics.
In other words, we ask how removing the structure from the small scales while

maintaining the energy content affects turbulent mixing.

Aside from the fundamental aspects of understanding the importance of small-
scale structure to turbulent flows, there are direct applications for the results of

such a study. One such area, which motivates this study, regards the fields used to

initialize simulations of turbulent combustion (Trouv6 and Poinsot 1994, Vervisch

1992). In such simulations, the initial conditions are generally generated by assum-

ing the spectrum and arbitrarily assigning the phases. While providing the correct

energy content, this procedure eliminates the structure of the turbulence, and a
period of time is required for the flow to recover from the initial conditions. In re-

acting flow simulations in which the turbulence is decaying, an adjustment time is

quite undesirable. For the case of partially premixed and nonpremixed combustion,

the problem is compounded by the fact that both the velocity and scalar fluctuating
fields must be specified. In this case, not only are there recovery periods for each
field, but also for the correlation between the fields.

The outline of this study is as follows. We briefly describe the direct numerical

simulation methodology used in this study, including the procedure for removing the

small-scale structure while maintaining the energy content. The conditions under

which the data can be interpreted in the context of nonpremixed combustion are

then given, where additional quantities of interest in reacting flows are presented.

The unmodified and structureless data are compared in terms of the vorticity and

scalar gradient variables along with terms in their transport equations. In addition
to examining the vorticity and scalar gradient field individually, their correlated

behavior, represented by the scalar product of the vorticity and scalar gradient,

is also examined. After the effect of removing the small-scale structure on these
variables has been assessed, the ability of various fields to recover from the removal
of the turbulent structure is assessed.

1.1 Numerical _imulation

The simulations used to investigate the effects of small scale structure on mixing

are described in detail in Ruetsch and Maxey (1991, 1992); a brief review is given
here. The simulation is based on a pseudospectral method in a cube of side L = 2r



Turbulent small-scale structure and mizing 215

with 120 grid points in each direction. The flow field is periodic in all three directions

and governed by the rotational form of the incompressible Navier-Stokes equations:

Oui O (1) 02ul"_ "ijkOJjUk : --OX-"_ P + _ujuj + OziOx----------_

along with the incompressibility condition

0ui
_ _ 0.

Oxi

Here ui and wi are the components of the velocity and vorticity fields in the xi di-

rection, P is the pressure, and eijk is the Levi-Civita pseudotensor. The simulations
begin with the velocity field at rest, ui = 0, and the turbulence is generated by a

source term added to the Navier-Stokes equations, which is itself a solution to the

Langevin equation as described in Eswaran and Pope (1988a, 1988b). When the

velocity field has reached stationary conditions, the scalar field is introduced.

The initial scalar field configuration has a uniform gradient in the xa-direction

with no fluctuations. The scalar field, Z, is governed by the convective-diffusive

equation:
OZ OZ 02Z

-_ + ui u = :D_ (1)Ozi OziOzi "

To account for the nonperiodic scalar field in the periodic domain, the scalar field

Z is decomposed into the mean and fluctuating components:

z = + 0 (2)

where [3 is the uniform gradient and 0 is the periodic fluctuating field used in the

computations. Substituting Eq. 2 into Eq. 1 we obtain the governing equation for
the fluctuations of 0:

00 00 020

+ ui u +/3uaOX i = 'D OxiOxi

After the introduction of the scalar field, the simulation is run for more than ten

large-eddy turnover times, resulting in stationary scalar and velocity fields. The
microscale Reynolds number for the simulations is Rex = 59, the dissipation length

scale to Taylor microscale ratio is l/A = 4.0, the Taylor microscale to Kolmogorov

microscale ratio is A/0 = 15.1, the Schmidt number is unity, and the uniform

gradient,/_, is 1/(27r). These fields are then used as the "initial conditions" for the
rest of the study. Before continuing the simulations, however, a method of removing

the small-scale structure must be applied to this data.

1.$ Removal of the small-scale structure

In this section we describe the method used to remove the small-scale structure.

We do not wish to remove the energy associated with the small scales, just the

organized structure. Removal of both the small scale structure and the energy
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has been examined in other studies (She et al. 1988). As mentioned previously,
structureless fields are often used to initialize turbulence simulations. We can mimic

this procedure by manipulating the phase information in our simulation data.

The algorithm for the removal of organized structure is simply phase scrambling.

More precisely, the Fourier coefficients of the velocity and scalar fields from the

simulation data, fii and t_ respectively, are modified in the following manner:

fii = fiie'_'; 0 = 0e '_'.

where the phase angles, ¢1 and es, are random numbers between zero and 27r. This
process leaves the energy of each mode the same, 00" = 0t}*. While this scrambling

is sufficient for the scalar data, the resulting velocity field does not satisfy continuity.

To correct this, the filter

(ft, = S(kx, ks, k3) _j - ks ] (_j

is used to remove the dilatational component from ui, producing the incompressible

field ui. Here ki is the wavenumber component, and _ij is the Kronecker delta

function. The scaling parameter S(kl, k2, k3) rescales the velocity so that fiifi_ --

fiifi[, thus the kinetic energy at a particular wavenumber remains unchanged. (One
could scramble the data using phase angles that are constrained by the condition

kifii = 0.)

Phase scrambling is performed only once but is applied at all wavenumbers.

Therefore, the scrambling removes the structure from all scales, not just the small

scales. However, we will see that for the vorticity and scalar gradient, it is primarily
the small scales that are affected.

1.3 Relation _o nonpremized flames

Before we begin the analysis of the simulation data, we describe how the data can

be interpreted in terms of the topic that motivated this study, that of nonpremixed

combustion, and under what conditions this interpretation is valid. Although the

uniform scalar gradient may correspond to several physical quantities such as tem-

perature or salinity, the motivation for this study is reacting flows, so we interpret

the scalar in terms of species concentrations. For a one-step chemical scheme where
fuel and oxidizer react to form a product,

F + rO _ (1 + r)P

we can define the mixture fraction as

l+r_ -
Z=

l+r

where r is the mass-based stoichiometric coefficient and YF and Yo are the fuel

and oxidizer mass fractions. In the limit of zero heat release and fast chemistry,
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the passive scalar field with a uniform gradient can be considered a simulation of

nonpremixed combustion where the mixture fraction is governed by Eq. 1. Under
these assumptions, the flame will be located on the stoichiometric surface

One of the main issues in turbulent combustion is how flame surface area is

increased by turbulent fluctuations, thus increasing the amount of fuel and oxidizer

in contact and the global burning rate. By considering all possible values of Z,t by

specifying different values of r in these passive simulations, the entire flow field cart

be considered to be an ensemble of flames used to generate well-converged statistics

of flame surface area growth. In contrast, cases which account for heat release have

a single fixed stoichiometric value, and therefore only a portion of the computational
domain lies within the flame.

The average flame surface area over all possible values of Z,t in the computa-

tional domain can be determined from the techniques developed for calculating the

propagation speed of turbulent premixed flames using the G-equation (Kerstein

and Ashurst 1988). As a consequence of their initial condition for the scalar field of

G(xi, t = O) = xl, the turbulent to laminar flame surface area ratio was determined

to be {I_TGI). For our case with an initial condition of Z(xi, t = O) = _x3, the
turbulent to laminar flame surface area ratio is:

AT (IVZI)

AL

With an expression for the average flame surface area in our computational domain,
we can now turn our attention to the results on how the removal of small-scale

structure affects mixing and the production of flame surface area.

2. Accomplishments

The results from this study are presented in two parts. The effect of the removal

of the turbulent structure from the velocity and scalar fields on the vorticity and

scalar gradient, and the correlation between these fields, is explored first. Once
the effect of removing the structure from these fields has been established, the
unmodified and scrambled fields are used as initial conditions in further simulations

in the second part. The recovery of the scrambled fields is then evaluated along

with the consequences of this recovery for turbulent mixing.

_. I. Comparison of the initial fields

Before we compare the differences between the unmodified and scrambled data

sets, we should review their similarities. The magnitude of the Fourier coefficients

remains unchanged so that the energy and dissipation spectra for the two fields
are the same. In addition, any quantities that can be derived from the spectra are

also identical. For example, the two-point correlations, being the Fourier transform

of the energy spectra, are unaffected by the scrambling process. Mean quantities
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FIGURE 1. Probability density functions for the vorticity (--) and scalar gra-

dient (...) components. The unscrambled data (top) exhibit exponential tails while

the scrambled data (bottom) show Gaussian distributions. (A Gaussian distribution

is shown by the thin solid llne in each plot.)

associated with the spectra such as the mean kinetic energy, enstrophy, and square

of the scalar gradient are also invariant with respect to the scrambling operation.

Although phase scrambling produces fields with some global parameters un-

changed, many properties of the two fields change drastically when the phase infor-

mation is modified. These features deal with the localized structures in isotropic

turbulence, and the aim of this paper is to determine how these small scales differ

and what the consequences of the differences are.

We use gradients of the scalar and velocity fields to examine the small scales.

The velocity gradient tensor yields the vorticity, wi, and the rate of strain tensor,

Sij = 1/2(Oui/Oxj + Ouj/Oxi). We also consider the scalar quantities associated

with these variables such as the local enstrophy, wiwi, and the kinematic part of

the kinetic energy dissipation, SijSij. The gradient of the scalar field is denoted by

_i = OZlOx_.

We begin the comparison between unmodified and scrambled data by examin-

ing the probability distributions of the vorticity and scalar gradient fields. It is



Turbulent _mall-._cale structure and mixing 219

$._ %

FIGURE 2. Local enstrophy fields before and after the phase information is scram-

bled. The local enstrophy prior to scrambling is shown on the top with a threshold

of 4(o.,,ia,,i>, containing 3.8% of the total volume. The local enstrophy after phase

scrambling with a threshold of 4(¢0ia0i} is shown on the bottom left, which contains

0.2% of the volume. The local enstrophy after phase scrambling with a threshold

in local enstrophy of 2.86(coicoi>, which contains the same volume as the figure of

unscrambled data on the top, is shown bottom right.
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well known that velocity derivative statistics of isotropic turbulence exhibit non-

Gaussian tails in their probability distributions (Batchelor and Townsend 1949,
Kuo and Corrsin 1971). Bershadskii et al. (1993) found a universal value for the

slopes of these exponential tails from various experiments, which agrees well with

the results in Fig. 1. The scalar gradient also exhibits this non-Gaussianity, only to
a greater extent as seen in Fig. 1.

In addition to the difference in the statistical distributions between the original
and scrambled datasets, their spatial distributions also differ. The small-scale struc-

ture of the local enstrophy fields in Fig. 2 show that the vortex tubes ("worms")

observed in the unmodified data disappear as a result of phase scrambling. This
apparent lack of structure in the scrambled data is not a result of the smaller volume

taken obtained in thresholding by the local enstrophy. Even when this threshold

for the scrambled data is reduced so that the same volume is occupied in both

the scrambled and unmodified cases, (top and bottom right images in Fig. 2), we
observe no coherent structures in the scrambled case.

The scalar gradient field also shows large variations in structure between the

unmodified and scrambled cases. The original _i¢i field shows sheet-like structures

at the small scales as depicted in Fig. 3. As with the scrambled enstrophy fields,

the scrambled scalar gradient field shows an absence of these structures regardless

of the value of the threshold. These effects are exactly what one would expect. The

existence of coherent structures implies coherence in phase among components at

different wavenumbers. Obviously phase scrambling destroys that coherence.

Another effect of scrambling concerns the ability of the vorticity and scalar gra-

dient fields to recover from scrambled conditions. While this recovery is examined
in detail later, the mechanisms involved in the recovery are discussed here. These

are apparent in the transport equations for the local enstrophy and square of the

scalar gradient. The local enstrophy transport equation is:

Dt OxjOxj Oxj Oxj J' (3)

Analogously, the transport equation for the square of the scalar gradient is:

D,i,iDt =-2'i'JSi' + D_ 02'i"[_ 2_j O'i }Oxj" (4)

These transport equations contain production, diffusion, and dissipation terms on

their right-hand sides. The production of local enstrophy and scalar gradient

squared, through vortex stretching and scalar gradient compression, results from

the preferential alignment of the vorticity and scalar gradient vectors with the axes

of the principal rates of strain. The phase scrambling procedure affects these pro-

duction terms. The probability distributions of the production terms displayed

in Fig. 4 indicate that the exponential tails in the unmodified case are removed by
phase scrambling. In addition, the probability distributions of the production terms

in the unmodified flow are asymmetric as they yield net positive production of local

enstrophy and square of the scalar gradient.
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FIGURE 3. Square of the scalar gradient before and after the phase information

is scrambled. The square of the scalar gradient prior to scrambling is shown on the

top with a threshold of 4(_i_i), containing 4.1% of the total volume. The data after

phase scrambling with a threshold of 4((i(i) is shown bottom left which contains

0.2% of the volume. The data after phase scrambling with a threshold of 2.b5(_i(_i),

which contains the same volume as the figure of unscrambled data on the top, is

shown bottom right.
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incompressible flows is:

DSijSIj _
Dt

1
2SiiSikSt_- _wiwjSij

02P { c32SoSiJ 2 c3S° OSo } (5)- 2Sij Oxic3x-----_"+ v OxkOxk _ Oxk

When wiwjSij > 0, positive production of enstrophy occurs as seen from Eq. 3.
This situation, however, results in negative production of strain as is apparent from
the second term on the right-hand side of Eq. 5. In terms of the evolution of these

fields, an intense localized strain field may create a patch of strong vorticity, but at

its own expense. A strong patch of scalar gradient can be created, however, with

no adverse effect on the local strain that produced it. Due to these differences in

vorticity-strain and scalar gradient-strain couplings, one would expect to observe

stronger tails in the (positive) scalar gradient production PDF and scalar gradient
PDF than in their vorticity-based counterparts. It is interesting to note that the

tails for negative production of both scalar gradient squared and local enstrophy
coincide.

Up to this point we have discussed the vorticity and scalar gradient fields, and the

effect of phase scrambling on these fields, independently. We now turn our attention

-e -'4 -z 5 2 i -e z4 zz 6 i
FIGURE 4. Probability distributions for the normalized production terms for

local enstrophy, (wiwjSij)l/3/(w'2S')l/3 (_), and square of the scalar gradient,
(-¢i_jSii)l/3/(_'2S') 1/3 (...), for the unmodified data (left) and scrambled data

(right). The asymmetry of the curves indicates the overall positive production that

occurs in turbulent flows, with the greater asymmetry occurring in the scalar field.

While the distribution functions for both local enstrophy and scalar gradient
squared production show skewness towards positive production, this skewness is

greater for the scalar gradient squared production. This difference in production
results in the scalar gradient being large relative to the vorticity (Fig. 1). For
the case of unity Schmidt number this difference is not intuitive, but it can be

explained by the two-way coupling between the vorticity and strain fields, whereas
the passive scalar field has no effect on the strain field. The effect of the strain rate

on the vorticity is apparent in Eq. 3. The inverse coupling, that of the vorticity

on the strain rate, can be observed in the transport equation for SijSij, which in
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FIGURE 5. Probability distributions of the alignment between the vorticity and

scalar gradient vectors (left) and wi_i (right) for the unmodified data (_) and

scrambled data (..-).

to the correlation between these fields. Two measures of this correlation are the

scalar product of the vorticity and the scalar gradient, wi(i, and the alignment

between these vectors, cos(w, (). The term wi(i has contributions from both the

alignment of the vectors and their magnitudes, whereas cos(w,() contains only

information on their alignment. The probability distributions of these quantities

indicate that the scrambling process has a large effect on the correlation between the

velocity and scalar fields. The PDF of the alignment between the vorticity and scalar

gradient vectors in Fig. 5 shows a peak when these vectors are orthogonal. Figure 5

also shows an even stronger peak in wi_i, indicating that the large magnitude events
in vorticity and strain tend to occur when the two vectors are orthogonal. So, while

the intense small scales are represented by the tails in the vorticity and scalar

gradient PDFs, they appear in the peaks of the wi_i and cos(w, () PDFs.

As with the vorticity and scalar gradient variables, some light can be shed on the

dynamics of wi_i by its transport equation:

-(Sc+ . (61Dt OxjOxj j Oxj Oxj

The strain rate does not enter this equation explicitly, so there is no production

term. In fact, under inviscid and nondiffusive conditions, wi_i is conserved:

D = O.
Dt

Since modifications to wi_i occur on a diffusive time scale, in high Reynolds number

or large Peclet number flows we expect a slower recovery of this field relative to the

recovery of the vorticity and scalar gradient fields, which are affected by inviscid

production terms.
The last fields we compare between the scrambled and unmodified data are the

flame surfaces. The turbulent to laminar flame surface area for the unmodified
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FIGURE 6. Flame surface area (ZsT = 0.5) for the initial fields of the unmodified

(left) and scrambled (right) data. The surface area of the scrambled field is larger

due to the large number of pockets relative to the more connected unmodified
surface.

scalar field, averaging over all stoichiometric surfaces, is AT/AL = 6.93. Phase

scrambling increases this value to AT/AL = 8.71. In this sense, for a given scalar

fluctuation spectrum, turbulence does not produce the maximum flame surface area.

The elevated flame surface area after scrambling can be seen in Fig. 6 where we

observe a highly disconnected flame surface in the scrambled field; conversely, the

flame surface of the unmodified scalar field shows a few pockets, but is relatively

coherent and connected. In order to have a distorted but connected flame surface,

phase coherence is important. When the phase information is randomized, scalar

deviations occur in small disconnected pockets which have a large flame surface

area.

2.2 Evolution of the scrambled fields

Having described the difference between the original and scrambled initial con-

ditions, we now turn our attention to the evolution of the velocity and scalar fields

and, in particular, to how the modified fields recover from their scrambled states.

Before phase scrambling, the simulations were run with the velocity forced until

both scalar and velocity fields reached stationary conditions. Therefore, we expect

the simulations using the unmodified data as initial conditions to maintain their

stationary states with small fluctuations due to the stochastic forcing of the velocity

field. By comparing the simulations using scrambled and unmodified fields as initial

conditions, the influence of phase scrambling becomes apparent. For example, the

skewness and kurtosis time series of a longitudinal velocity derivative are shown in
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FIGUaE 7. Skewness (left) and kurtosis (right) time series of the normal velocity

derivative for the simulation with unmodified (_) and scrambled (-..) initial

conditions• The skewness for the scrambled case recovers quickly to the stationary

value, while the kurtosis requires on the order of one large-eddy turnover time to

recover.

Fig. 7. The velocity derivative skewness for the unmodified data is roughly constant

at a value of -0.5, whereas the scrambled initial data have zero velocity derivative

skewness but recover to the unmodified case value very quickly, in a fraction of

an eddy turnover time. The velocity derivative kurtosis for the unmodified case

fluctuates about a mean value of 4.5, while the scrambled initial data have a kurtosis

of 3 which recovers relatively slowly, taking about one large-eddy turnover time to

reach the unmodified value.

The rapid adjustment of the velocity derivative skewness in Fig. 7 has strong

implications for the enstrophy evolution. The velocity derivative skewness can be

expressed in terms of the vorticity and strain-rate tensor (Rotta 1972) as:

\ ) / 35

The term in brackets on the right-hand side is simply the volume average enstrophy

production that occurs in Eq. 3. As the velocity derivative skewness, which is related

to enstrophy production, quickly recovers from the scrambled initial conditions, one

would expect the local enstrophy itself to recover quickly. From the time sequences

of PDFs in Fig. 8, we see that this is the case. These time sequences show that

the adjustment from the Gaussian tails of the scrambled initial condition to the

exponential tails of the unmodified data occurs in less than 0.5TLE for both vorticity
and scalar fields. One also observes that the vorticity and scalar gradient structures

recover quickly; see Figs. 9 and 10, respectively.

While the structure and intensity of the vorticity and scalar gradient fields recover

within a large-eddy turnover time, the correlation between them does not recover

as quickly. As stated previously, while the local enstrophy and square of the scalar

gradient equations contain inviscid or nondiffusive production terms, the transport
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FIGURE 8. PDF time series of the Xl-component of the vorticity (left) and

scalar gradient (right) of the scrambled simulations at times t/TLE = 0 (--),

t/TLE = 0.25 (+), t/TLE = 0.5 (×), and tITLE = 1 (o). The adjustment of the

tails from Gaussian to exponential form occurs within 0.5TLE for both vorticity and

scalar gradient fields.

equation for wi_i has no such term. Its recovery from the initial conditions occurs

only through diffusive processes. The slower recovery is clear in the wi_i-PDF time

sequence in Fig. 11.

In addition to the lack of an inviscid/nondiffusive production term, there is an-

other reason for the slower recovery of the wi¢i PDF. The scrambling process affects

the wi_i PDF more than either the vorticity or scalar gradient PDFs. The wi_i-PDF

of the unmodified data has a strong peak while the same PDF after scrambling is

relatively fiat. The scrambling process affects the tails of the vorticity and scalar

gradient PDFs.

We now turn our attention to the effect of scrambling on turbulent mixing. In

particular, we wish to assess how the flame surface area is affected by scrambling.

Flame surface area production depends strongly on the correlation between the flow

and scalar fields. The fractional change in flame surface area is given by the flame

stretch (Candel and Poinsot 1990), which for a nonpropagating, nondiffusive surface

in an incompressible flow is:

1 dA

K- A dt - ninjSij (7)

where A represents the surface area and the normal to the flame surface is given

by ni = -_i/_X/_j. Therefore, flame surface area production is closely related to

the scalar gradient production term, -_i_jSij. The recovery of the scalar gradient

production from scrambled initial conditions could be examined from its transport
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FIGURE 9. Time sequence of the evolution of the local enstrophy field from the

scrambled simulations. Surfaces of wiwi > 4(wiwi) are shown at times t/TLE = 0

(top left), t/TLE = 0.25 (top right), t/TLE = 0.5 (bottom left), t/TLE = 1.0

(bottom right).
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FIGURE 10. Time sequence of the evolution of the scalar dissipation field from the

scrambled simulations. Surfaces of _i_i > 4{_i) are shown at times tITLE = 0 (top
left), tITLE = 0.25 (top right), tITLE = 0.5 (bottom left), tITLE = 1.0 (bottom
right).
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FIaURE 11. PDF time sequence of Wi_i for the scrambled simulations at times

t/TLE= 0 ), = 0.25(+), t/TLE = O.5(x), and t/TLs = 1 (o).

equation,

D Ouk 1
D---t(-_i_jSij) =2"_zi _j_kS 0 + Si_Skj_i_j + -_ {(wi_i) 2 -wiwi_j_j}

o2P { 0% o's,,}OxkOzk OXki)Zk

however, we shall take a different approach. Rather than use the correlation between

the strain and scalar gradient, we shall use the correlation between the vortieity and

scalar gradient, _io)i, along with their alignment, cos(_i, wi). Although the connec-

tion between -_i_jSij and flame surface area production is obvious from Eq. 7, the

connection between _iwi and flame surface area production is not as apparent. This

connection is demonstrated in Fig. 12 where two cases of a vortex tube interacting
with a flame are portrayed, one with the sealar gradient and vorticity orthogonal,

03i_ i = 0, and the other with these vectors colinear. When the vortieity and mixture

fraction gradient are colinear, the motion induced by the vortex eonvects material
elements within the flame surface, and no increase in flame surface area results.

When the vorticity is orthogonal to the mixture fraction gradient, the motion in-

duced by the vortex is perpendicular to the flame surface, and the flame "wraps"
or is stretched around the vortex. Although this process does not produce flame

surface area, it indicates the presence of flame surface area production elsewhere
in the flow. This is seen in the schematic diagram of Fig. 13, which - although

representing a simplified two-dimensional view of turbulence - demonstrates the

balance between the (net) flame surface area generation through strain and folding

and wrapping of the flame by vorticity. Flame surface area is also destroyed by

diffusion in the vortex core, but this occurs after the wrapping by the vortex.

Having established a mechanism for flame surface area production in terms of

¢Oi_i, we can now return to the PDF in Fig. 11 and relate the effects of scrambling
on the generation of flame surface area. Flame surface area generation is greatest

when there is a strong peak in the wi¢i-PDF at the origin. The scrambled initial



230 G. R. Ruetsch _ J. H. Ferziger

!

FIGURE 12. A vortex tube and flame surface (mixture fraction isopleth) interac-

tion. When the vorticity and scalar gradient are orthogonal to each other (wi¢i = 0),
as in the case on the left, the flame is wrapped around the vortex, increasing the

flame surface area. When these two vectors are parallel (right), transport occurs
within flame and no increase in area occurs.

condition has a relatively weak peak. Furthermore, the recovery to a strong peak

proceeds slowly as we have discussed. Therefore, we expect that the scrambled

initial condition will produce a flow with a deficit in flame surface area production

relative to the unmodified flow. From examining time series of the flame surface area

in Fig. 14, we see that these predicted trends do occur. In this figure, the evolution

of the flame surface area is shown for the following initial conditions: unmodified

flow, flow with the velocity and scalar fields scrambled, and flow with only the scalar

field scrambled. Despite the elevated initial value, the flame surface area quickly
drops well below the value in the unmodified case within a large-eddy turnover time

for both scrambled cases as the reduced flame surface area production is insufficient

to balance the diffusive effects. When only the scalar field is scrambled, the flame

surface area recovers after approximately three large-eddy turnover times. For the

case in which both the velocity and scalar fields are scrambled, the flame surface

area has not recovered even after three large-eddy turnover times. The evolution

of the scrambled flame surface during the first large-eddy turnover time is shown

in Fig. 15. The destruction of the small detached pockets of the scrambled flame

surface within the first quarter large-eddy turnover time corresponds to the rapid
decrease in flame area observed in Fig. 14. The absence of intense flame "wrapping"

results in this smaller flame area, relative to the unmodified case, for a substantial

period of time.
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FIGURE 13. A depiction of a flame surface being stretched by strain and folded

and wrapped by vorticity. Both processes require correlated velocity and scalar
fields and must coexist in order to conserve flame surface area.
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FIGURE 15. Time sequence of the evolution of the flame surface for ZST = 0.5 at

times t/TLk: = 0 (top left), tITLE = 0.25 (top right), tITLE = 0.5 (bottom left),

and tITLE = 1.0 (bottom right).

3. Conclusions and future work

The effect of using turbulent fields with arbitrary phase information as initial

conditions for numerical simulations has been explored in this paper. The fields

with arbitrary phase information show Gaussian rather than exponential tails in the
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vorticity and scalar gradient PDFs. In addition to the decreased volume of regions

with intense vorticity and scalar gradient, they also show a lack of structure.

Through the use of numerical simulations and analysis of the transport equa-

tions for the vorticity and scalar gradient, the recovery from the scrambled initial

conditions was found to proceed quickly for the vorticity and scalar gradient fields,

whereas the correlation between these fields, wi_i, recovers more slowly. The main

reason for the slower recovery is that strain has no direct effect on the evolution of

_,_,. This correlation plays a role in flame surface area production; scrambling of

phase information results in decreased flame surface area production for a prolonged

time.

As expressed in the introduction, the motivation for this work was to determine

how using initial fields with arbitrary phases affects the results of simulations of

reacting flows. For simulations of premixed combustion where a planar flame can

propagate into a turbulent region, the only relevant fluctuating fields initially are the

velocity field and its derivatives. (The flame's propagation provides a nondiffusive

mechanism for wi_i recovery.) Therefore, the use of scrambled initial velocity data

should not cause problems provided enough time (one large-eddy turnover time)

is allowed for the velocity field to recover. However, this adjustment period is

undesirable, especially when the turbulence field is not stationary but decaying as

is the case in codes which use a compressible formulation of the equations. In

such simulations, it would be beneficial to use initial velocity fields taken from

incompressible simulations combined with the perturbation procedure of Ristorcelli

and Blaisdell (1997), which relaxes these incompressible fields to those of weakly

compressible turbulence.

For nonpremixed and partially premixed combustion, the use of initial fields

with arbitrary phase information is more problematic. Although the vorticity and

scalar gradient fields recover their phase information in approximately a large-eddy

turnover time, their correlated behavior recovers much more slowly. This correlated

behavior is important as it provides flame surface area production. For simulations

of nonpremixed or partially premixed combustion with a decaying velocity field,

there is little hope that any turbulence will be left by the time the correlated be-

havior re-establishes itself. For such cases it is necessary to use initial conditions

with proper phase information. Such initial fields can be generated from incom-

pressible simulations with mean scalar profiles and then modified using Ristorcelli

and Blaisdell's technique.
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Turbulent premixed combustion in the laminar
flamelet and the thin reaction zone regime

By H. Wenzel 1

1. Motivations and objectives

1.1 Definition of the thin reaction zone regime

Turbulent premixed combustion is a complex and important process in many

engineering applications. The two-way coupling between the turbulent flow and the

chemical kinetics produces an intractable problem in its entirety, and simplifications

to either the fluid dynamical or chemical components must be made.

Simplifications to the turbulent premixed combustion problems can be made by

restricting the conditions under which flames axe studied. One method of classifying

premixed flame is demonstrated by the plot in Fig. 1. Here the flame is categorized

according to two ratios of turbulent flow and flame scales: (1) the velocity ratio

u'/sL, where u' is the root mean square velocity fluctuation and SL is the laminar

burning velocity, and (2) g/gF, where g is the integral length scale of the turbulence

and _F is the flame thickness. We can subdivide this domain into several regimes.

For values of u'/_i < 1 one speaks of the wrinkled flame regime. As the turbulence

intensity increases, flames enter the corrugated flame regime. This regime exists as

one increases turbulence intensity until the Kaxlovitz number, defined as

Ka = tF/t_ = g_/O2 , (1)

reaches unity. The Kaxlovitz number is the ratio of the flame to Kolmogorov time

scales, where tF = _F/SL, and the Kolmogorov length and times scales are _ =

(va/e) 1/4 and tn = (v/e) 1/4. As seen in Eq. 1, unity Ka also implies unity tf/t 1 = 1

(for cases with unity Schmidt number Sc = 1).
One can also define a Kaxlovitz number in terms of the reaction zone thickness.

This is advantageous when one considers large activation energy asymptotics (e.g.

Peters 1992a), where the flame structure of a one-step chemical mechanism consists

of a chemically inert preheat zone and a reaction zone, (Fig. 2). The thickness of

the reaction zone _i is typically one order of magnitude smaller than the preheat

zone. This gives rise to the definition of a Kaxlovitz number based on the reaction
zone thickness:

Ka, = _i2/r/2 = Ka 6_/_2F . (2)

From this expression, one can derive relations between the turbulence intensity

u'/si and the length scale ratio _/gF, again under the assumption of Sc = 1:

Ul/SL --_ Re (_/_F) -1 = Ka 2/a (£/_F) 1/3 . (3)

1 Institut fiir Technische Mechanik, RWTH Aachen, Germany
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FIGURE 1. Regime diagram for premixed turbulent combustion.
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FIGURE 2. Asymptotic structure of a premixed laminar flame.
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Interaction between an eddy of the size lm and a turbulent flame front.

The line where Ka6 = 1, or r/ = 8, depicts the separation between the thin and

broken reaction zones.

The broken reaction zone regime is not accessible with the methods to be used in

this study, and the corrugated and wrinkled flamelet regimes have been examined

earlier (Peters 1992b). Therefore, the focus of this work is turned to the only

recently described thin reaction zone regime (Peters 1997). In this regime the

Kolmogorov length is less than the flame thickness but larger than the reaction

zone thickness, so that the smallest turbulent eddies may penetrate the preheat

zone but not the reaction zone. The characteristic length scale for this regime is

defined as the size of an eddy in the inertial range which has a turnover time tm

equal to the flame time tF:

lm= , (4)

where e is the turbulent dissipation u _a/L If one interprets the flame time as the

time needed to diffuse heat or chemical species over the flame thickness, tF =

12F/D, then the physical meaning of Im becomes clear as the maximum distance

that preheated fluid can be transported away from the reaction zone by turbulent

eddies, as illustrated in Fig. 3.

1.2 Derivation of a G-equation for the thin reaction zone regime

In the following, an equation for the displacement of the reaction zone is derived

which is very similar to the G-equation for the flamelet regime. Because the turbu-

lence now controls mixing in the preheat zone, the propagation velocity is no longer

determined by the mixture alone, but by diffusion and transport effects within the

preheat zone as well. We take a similar approach to Ruetsch & Broadwell 1995 and



240 H. Wenzel

Vervisch 1995, and start from a diffusive-reactive equation for the deficient species
of a one-step chemical reaction:

p (_-_-Y + v. VY)=V.(pDVY)+d_. (5)

Here Y is the mass fraction, v the fluid velocity, p the density, and & the chemical

source term. We can define an isoscalar surface Y(x, t) = Y0 that marks the in-

stantaneous position of the reaction zone. Its substantial derivative, DY/Dtly=yo ,
vanishes everywhere and it therefore satisfies the equation:

OY
dx[ = O. (6)+ VY.-_ r=Vo

The normal vector on this isosurface which points into the unburnt region, n =
VY/IVY[, can be used to combine Eqs. 5 and 6 to derive an expression for the

displacement speed of the reaction zone:

-_ Y=Yo V pIVYI n. (7)

We now want to make the formal connection with the G equation derived by
Kerstein et al. 1988. We introduce a scalar G so that the isosurface G = Go is

identical to the isosurface Y = Y0 and G < Go corresponds to the unburnt region.
A similar equation to Eq. 6 can be written in terms of G:

OG d_tt G=Go-_- +VG. =0. (s)

Eq. 7 may be introduced into Eq. 8 if we realize that the displacement speed and
the normal vector are identical for both fields:

0c Iv. (oDvr)+ ] Ivcl (9)-_- + v. VG = - plVYI

The diffusive term on the right hand side can be split into a curvature term and a

term representing diffusion along the normal:

oc In. n. Ival (lo)-_- + v. VG= -D _tVGI- 7l_i'_ "

where _ denotes the curvature _ = XT. n and the normal vector is now given by the
G field, n = -VG/[VG].

The expression in square brackets has the dimension of a velocity. In a steady,

laminar, unstrained, planar flame it would be equal to the laminar burning veloc-

ity s_,, but here the propagation speed of the thin reaction zone can no longer be
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prescribed due to the dependence on fluctuating quantities in the preheat zone up-
stream. It is reasonable, however, to expect it to be of the same order of magnitude

as s °. If this hypothesis holds, normalizing Eq. 10 with the Kolmogorov length and
time scale shows each term of the order of unity, except for the last one, which is

of the order of Ka -2 and therefore small in the thin reaction zone regime (Peters

1997). This assumption is supported by an earlier direct numerical simulation of

the G-equation (Wenzel & Peters 1997). These simulations contained a laminar
burning velocity that depended linearly on strain and curvature and showed a simi-

lar behavior of the eikonal propagation term becoming less important when the thin

reaction zone regime is reached. In order to analyze Eq. 10, we use the statistical
s* and themean value for the expression in the square brackets, which is called - L,

model G-equation for the thin reaction zone regime can be written:

OG
+ v. vv = -D  IVGI +  ZlVal • (11)

The similarity to the G-equation for the laminar flamelet regime becomes appar-

ent when we present the equation we are going to use for the direct numerical

simulations in that regime:

OG
O---t+ v. VG = -D_ _lVal + s_WG[, (12)

where DE = sOL£ is the Markstein diffusivity taken with the Markstein length £:.
This equation comes from an asymptotic analysis of the response of the flame speed

on curvature and stretch (Clavin & Williams 1982) where the influence of the stretch

has been neglected.

Both Eqs. 11 and 12 show exactly the same structure; the only differences are
the replacement of the Markstein diffusivity DE by the mass diffusivity D and the

laminar burning velocity s_, which is determined only through chemistry, by the

propagation velocity of the reaction layer s[, which is influenced by an interac-
tion between the chemistry and the flow field. Another distinction between these

equations should be noted. In the laminar flamelet regime the propagation term

S°LIVGI plays the most prominent role, whereas in the thin reaction zone regime
the evolution of G is primarily influenced by the curvature term -D _IVGI

1.S The equation for "]VG I for the laminar flamelet and the thin reaction zone regime

In modeling turbulent premixed combustion the determination of the ratio of the

turbulent to the laminar burning velocity plays an important role. Kerstein et al.

1988 could show that this quantity is, under some restrictions, equal to the absolute

value of the gradient of G, which is called _ _--IVGI in the subsequent part of this
work.

Although an exact formulation for _ can be derived directly from Eqs. 11 and

12 by applying the operator -(n • V) and then averaging (Wenzel & Peters 1997,
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Keller 1996), the resultant expression is intractable, and therefore a model equation
for _ which is valid for both regimes was proposed by Peters 1997:

0-# Dt(V_) 2 s_2 D_S
0t +v. vw = -D,_(_)lV_l +co -v'v'_

(13)
The terms on the left-hand side are the unsteady change and the convection of the

mean value, the first term on the right-hand side is the turbulent transport, the

second the production by mean velocity gradients, and the third the production by
turbulent fluctuations of the velocity field. The remaining two terms are sink terms;

the one proportional to _2 due to flame propagation is of most importance in the

flamelet regime. The last one comes from the curvature term in the G-equation and

is most active in the thin reaction zone regime. For a further details regarding this
equation the readers are referred to Peters (1997).

In the following sections of this study we will carry out a direct numerical simu-

lation for turbulent premixed combustion both in the laminar flamelet and in the

thin reaction zone regime by solving Eqs. 11 and 12 numerically for the case of ho-

mogeneous, isotropic turbulence. The objective is to gain insight into the physical

interaction of a propagating scalar with the flow field and to check the assumptions
that had to be made in the process of deriving the equation for the mean value of

a, Eq. 13. Furthermore, we want to determine the model constants that appear in
that equation.

This aim puts some severe demands on the numerical scheme to be used: (1) it

has to be highly accurate to avoid numerical diffusion contaminating the solution,

and (2) it has to be stable for a wide range of the two parameters: the burning

velocity and diffusivity. The first goal was achieved by using a pseudo-spectral

code. To accomplish the second goal a new numerical scheme had to be developed
that allows for the formation of cusps in a iso-G front.

2. Accomplishments

As mentioned above, we want to solve the G-equation subjected to homogeneous,

isotropic turbulence. The underlying turbulent flow field was calculated using a
pseudo-spectral code developed and described in Ruetsch 1992. This code is able to

compute the development of a dissipative scalar in addition to the flow field. This

feature was used to solve the complete left-hand side of the G-equation and the

diffusive term on the right-hand side. The main part of the following section focuses
on the incorporation of the eikonal propagation term SL [VG[ into the computer code

and the evaluation of the numerical scheme by comparing it to an analytical solution
of the G-equation.

ILl A numerical _cheme for the G-equation

To make the following part as clear as possible, we turn attention now solely
towards the propagation term of the G-equation; convection and diffusion are not
taken into account. The equation we want to solve then is:

OG
--_ = SL[VG[, (14)
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FIGURE 4. Formation of cusps.

where BL is a prescribed constant propagation velocity.

It is well known (e.g. Kerstein et al. 1988, Sethian 1996) that this equation

governs the motion of a front due to Huygen's principle through a quiescent medium.

One feature of this type of propagation is the formation of cusps from an initially

smooth front. This is illustrated in Fig. 4. At the location of these cusps, the

derivative of G undergoes a jump, which makes the numerical treatment of Eq. 14

quite difficult. Some previous studies (e.g. Im et al. 1996) therefore tried to suppress

the formation of cusps by choosing the diffusivity in the G-equation (Eqs. 11 and

12) large enough so the sharp gradients did not occur. This way of circumventing

this difficulty is no longer applicable if we want to analyze these equations in the

zero diffusivity limit.

We will use a numerical scheme that was originally developed for a scalar hyper-
bolic conservation law and was applied to this class of level-set equations by Sethian

(1996). It has previously been used on this particular problem by Wenzel & Peters

(1997) in the framework of a second-order finite-difference method.

To see the connection between the G-equation and a hyperbolic equation we

rewrite Eq. 14 for the one dimensional case:

OG _ SL[VG[ : OG OG/Ox OG OG OG
-_ O't SL IOG/Oxl Ox = --_ + SL-ff_x = o . (15)

This is actually a hyperbolic conservation equation for G with =l:sL as the signal

velocity.

If we adopt this interpretation of the G-equation, we may use an upwind-scheme

for the numerical calculation of this equation. To do so we follow the procedure out-

lined in Sethian (1996) and transform Eq. 15 again, into an equivalent Hamiltonian
formulation:

=o, (16)
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with the Hamiltonian H defined as:

OG) OG/Ox OG (17)H _ =-_Lioc/o_lO_ "

A numerical approximation of this expression might be given in terms of derivatives

of the G-field to the left and right of the point xi where we want to compute the
Hamiltonian:

(OG) _ .w. h(D'GIx,,D"G,z,) . (18)H -O-gz •

The numerical Hamiltonian h(D 'G[z,, D'GIx ,) is evaluated like the flux function

of a Godunov Scheme for a scalar hyperbolic conservation law. Sethian (1996) uses

the Enquist-Osher scheme in his work to calculate this quantity, but this scheme

suffers from the implicit addition of diffusivity by replacing a compression shock by
a compression wave in the corresponding Riemann problem. We therefore use an

exact formulation that was given in Hirsch (1990):

h(D'GI_,,DrGIx,) =

min(H(DtGI_,),H(D"G[_,))

max(H(D'GI_,),H(D"GI_,) )

maz(H(D'Vl_,),H(D"e]x,),H(O))

if D'GI.' <D GI.,

if D'GIz ' > D"GI.'

if DiGIt,> D GI.,

^D'GI="DrCI.,<O

(19)

Exact in this context means that in the Riemann problem all characteristics retain

their nature and no shock is replaced by a fan or vice versa.

The evaluation of Eq. 19 needs the calculation of the spatial derivatives D"/tG[_,

of the G-field. They are computed at points xi±l/2 = xi ± Ax/2 using a spectral
method.

The entire numerical procedure above could only be extended from a finite-

difference framework to this pseudo-spectral framework because we followed a view

on pseudo-spectral methods that Fornberg (1996) developed. He interprets them

as a high-accuracy limit of finite-difference methods, so that the upwind scheme
presented here becomes applicable.

To integrate these formulas into the computer code, they need an extension from

one to three dimensions. This, fortunately, is quite straightforward. Either in the

simplified G-equation Eq. 14 or in Eqs. 11 and 12, the eikonal term SLIVG[ can

be computed by the sum of the numerical Hamiltonians h in the x-, y-, and
z-directions:

SLIVG[ _ -- _(h(DtGI_,,D"GI_,) + h(D'GI,,,D"GI,,) + h(D'GIx,,D"GI,,) )
[ , ,

o

(20)
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FIGURE 5. Propagation of an iso-G front according to the Huyghen's principle.

The three-dimensional Hamiltonian H which is needed in the evaluation of Eq. 20
is defined as:

( OG ) OG/Ox,_ OG
g _x__ =--SL X/(OG/Oxk)(OG/Oxk)Ox _ ,

(21)

where Einstein's summation convention is only applied to the index k and not to
the index _.

_.2 Validation of the numerical scheme for the G-equation

Spectral methods are known to perform quite poorly when discontinuities are

present in the solution (Canuto et al. 1988). For that reason the numerical scheme
developed in this work needs to be validated. To that end we will construct an

analytical solution for a two-dimensional version of Eq. 14 with a specific initial

condition and check that against the numerical solution with the new scheme.

The derivation of the analytical solution is given first. On a 2re periodic grid, the
G-field is initialized as a sawtooth function:

x-y for O<__y<r (22)Go(x,y)= x+y-2r for r<y<2rr

Each iso-G front propagates according to the Huyghen's principle, as shown in

Fig. 5. The solution for G(x, y, t) can be constructed by geometrical considerations.

Only the region 0 < y < 7r is taken into account. The equation for the region

y < rr < 2rr immediately follows from symmetry.

The general procedure is to divide the domain into a subdomain which is not
influenced by the rarefaction fan that develops at the leading edge of the G-front,

and a subdomain which is influenced by it. Within each subdomain the spatial

derivatives can be formulated and and then fed into the two-dimensional G-equation,

so that the time integration is possible. The outermost point influenced by the
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FIGURE 6. Detail of the the Huyghen's propagation.

rarefaction fan, y*, travels in y-direction with a constant speed of 8L/V/'2, see Fig. 6.
Inside the rarefaction fan the following relation holds:

Oh c3G y

Oy Oy v ( Lt)2_
(23)

Since all the spatial partial differentials in the G-equation are known, the time
integration can be carried out:

y2 SLt

(sLt)2_y2 for 0<y<

sLt
'LV_ for __<y<_r

(24)

Defining the time t* = x/r2y/._L, when the rarefaction fan reaches a point on the

y-axis, one obtains the following analytical equation for G(x, y, t):

_t. GO(X,y)+V_sLt for t<t*

t y2

G(x,y,t)= G(x,y,t*)+sL l+(sL_)2_y2dt= for t>t*

Go(x, y) -J- 2y 3t- _¢/(SLt) 2 -- y2 _ V/(SLt.)2 _ y2

(25)
The numerical solution for that problem has to capture the two basic features of

a propagating scalar according to the Huyghen's principle (see Fig. 5): (1) the cusps
at the back of the front must retain their shape, and (2) circular rarefaction waves

must develop at the leading edge. To confirm the reproduction of these feature by
the numerical solution, the results of both numerical integration of this problem and

the analytical solution from Eq. 25 for two different grid resolutions are presented
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t
FIGURE 7. Analytical versus numerical solution of the G-equation. Results for

two values of y are plotted, y = 0 corresponds to the upper set of lines, y = 2.9 to

the lower set. _ : analytical solution, .... : 32-point grid, ........ : 64-point

grid.

in Fig. 7. This plot shows the time evolution for two points on the y-axis, y = 0

and y = 2.9. The first location was chosen because it is the leading edge of the

propagating front, and any violation of feature (2) would become apparent. The

ability of the scheme to capture feature (1) is proven with the time evolution at

y = 2.9. This point lies very close to the the back of the front, and any problems

in dealing with the cusp at that location should become apparent there.

The stability of the scheme is demonstrated in Fig 8 where the partial derivative

OG/Oy for a typical case during the numerical calculation is shown. There are

some overshoots in the vicinity of the cusp at y = 7r, but they are not amplified,

and they actually become smaller because the jump in the derivatives gets smaller
once the rarefaction fan reaches this position. Any disturbances introduced by

the discontinuity in the gradient of G smooth out immediately by the variation-

diminishing nature of the G-equation, if, in an explicit code, the CFL-condition

formulated with the laminar burning velocity is obeyed.

The excellent agreement of the numerical scheme with the closed solution for

this test case and its remarkable stability encourage its use in direct numerical

simulations of the G-equation for turbulent flow.
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_.3 The treatment of the curvature term _[VG[

The curvature term nIVG[ which appears in Eqs. 11 and 12 is basically diffusive

in its nature and, therefore, much easier to incorporate into a pseudo-spectral code

than the propagation term SL[VGI. However, it is highly nonlinear, and some

caution has to be taken to minimize aliasing errors. To achieve this we express the
curvature K as:

t¢ = V.n = V. I_--GI : \ ]_-pl 2 (26)

Using this relation, we can split _[VGI into a linear diffusive term that can be

treated very efficiently with a spectral method in Fourier space, and a nonlinear
term:

_tclVG I = V2G VG.VIVGI
WGI - V2G - VG. Vln(IVGI). (27)

The nonlinear product VG. VIn(IVGI) is computed in physical space. It only

contains a double product as opposed to a triple product that occurs in a direct

evaluation of Eq. 24 and thus the aliasing error is much smaller.

_.4 Results

The DNS for Eqs. 11 and 12 were made on a 64a-grid and statistical data was

dumped every 50 time steps. Typical time series for _ are plotted in Fig. 9 for three

different sets of the parameters burning velocity and diffusivity.

Saturation of _ was reached at approximately to = 0.85. The computation was

carried further until tl = 2.5; the difference is about 15 integral time scales of the
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0.0; ........ : s_ = I6.0, D_ = 0.0.
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t
s_ = t.0, D = 0.48; .... : s ° = 8.0, De =

flow, so that stable statistically stationary results can be expected. In that time

interval the mean values of _, u t and g were time averaged. The results are given in

the following table:

I 0
u/s L _/e.f _ (DNS-results) a (Eq. 28)
1.47 19.2 2.83 2.78

1.47 38.5 3.02 3.15

1.11 2.78

17.7 1.59 5.53 5.04
17.8 3.16 6.0 6.95

4.41 6.07 4.89 4.16

4.41 12.1 5.2 5.37

2.21 5.04 -

2.21 12.9 3.86 3.41

2.21 25.8 3.99 4.08

These results may be used to determine two of the constants in Eq. 13. After

applying closure assumptions regarding the turbulent diffusivity, it is possible to

derive an expression for _ in terms of the velocity ratio u'/s°L and the length ratio

e/gF for the limit where the turbulent production of _ is balanced by the two
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destruction terms in that equation (Peters 1997):

0.39 _ _/(0"39 _ _2 _ u'
2 eF + v\ 2 (28)

The implied assumption for the large scale turbulence limit _ = 2.0 uf/s° L is fulfilled
quite well in the runs with zero Markstein diffusivity. These are marked by a dash

in the length ratio column in the table above since the flame thickness vanishes for
that case. The constant a = c3/cl is then fitted with the results of the other DNS
runs to a value of 1.3.

In this section we derived a new numerical scheme for solving the G-equation with
a pseudo-spectral code. It was shown to possess the ability to handle the cusps that

develop naturally in the propagation of a scalar due to Huyghen's principle. The

direct numerical simulations that were carried out with this new scheme proved

it to be a valuable tool in understanding premixed turbulent combustion because

it can handle all possible sets of parameters that may appear if one analyzes this

interesting and complex physical phenomenon in the framework of the G-equation.

3. Future work

In the near future we want to apply the code to gather more statistical data for

the G-equation, the _-equation, and the equation for the variance of G. The latter

equation was not presented in this work, but plays an important role in the closure

of the turbulent G-equation if we don't retreat to the limiting case of production

equals destruction in the model equation for _. It is then necessary to evaluate every

term that appears in these equations, and the simple averaging procedure where
the quantities are averaged over the whole box can no longer be used. Instead

these quantities have to be conditionally averaged according to their position in the

turbulent flame brush. This work was accomplished previously (Wenzel & Peters

1997) with finite-difference methods and has to be reimplemented using spectral
methods.

In the formulation of dynamical sub-grid models for the G-equation there still

lie some uncertainties (Im et al. 1996), which can be tackled using this newly

developed numerical scheme because it can handle the interesting limiting case of

zero diffusivity. In that context it will be of high interest to compute and compare

the spectra of both the flow field and the scalar field. To get meaningful results
from that kind of analysis, the resolution should be improved to a 963 or 1283 grid

to get a larger inertial range.
The whole study that was presented here dealt only with the passive G-equation.

That is, heat release effects were not accounted for. By this heat release the flame

can have influence back on the flow field, and some new interesting effects can be

seen. In the future these phenomena should be definitively included in a direct

numerical simulation of the turbulent G-equation, although it seems clear at this

moment that a pseudo-spectral code can no longer be applied to solve that problem

and some higher order finite-difference or finite-volume methods will have to be
used.
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Large eddy simulation of combustion
instabilities in turbulent premixed burners

By D. Veynante I AND T. Poinsot 2

1. Motivations and objectives

Large Eddy Simulation (LES) techniques are viewed today as the next step in

Computational Fluid Dynamics studies to address classes of problems where classi-

cal Reynolds-averaged Navier Stokes approaches (RANS) have proved to lack pre-

cision or where the intrinsically unsteady nature of the flow makes RANS clearly

inadequate. In the field of combustion, the understanding and the control of com-

bustion instabilities are domains where LES is required and will be applied in prac-

tical systems. There are at least two reasons for this:

(1) Reacting flows submitted to instabilities are dominated by very large eddies

sweeping the combustion chamber. Such flows are obviously fully unsteady and

make RANS approaches difficult to use.

(2) Structures controlling combustion in these flows are large, and LES should

be easier in such cases than for turbulent combustion in general where an extended

range of eddies has to be resolved to characterize the turbulence/chemistry inter-

action.

Multiple techniques have been proposed in the past to perform LES of turbulent

premixed combustion (Menon and Kerstein 1992, Menon et a/.1994, Smith and

Menon 1996, 1997, Pinna et a1.1996, 1997, Veynante and Poinsot 1997a). Few

of them have been used in a realistic configuration (see for example Kailasanath

et al.1991). In most cases, fundamental studies in simple configurations such as

freely propagating flames or stagnation point flames have been performed. In such

situations, assumptions are generally made in the fundamental studies (e.g. ignition

and quenching mechanisms are ignored) but must be reconsidered in more realistic

configurations. Flame stabilization and flame-wall interactions, for example, should

be considered in detail and may influence the choice of the LES formulation.

We will briefly recall the basis of LES techniques for combustion and investigate

in more detail the performance of one specific method: the Thickened Flame ap-

proach, proposed by Butler & O'Rourke (1977). Our objective is to test this method

in a configuration where combustion instabilities occur: the flame stabilized behind

a backward-facing step. This configuration was chosen since results from many ex-

perimental studies are available (Keller et al.1981, Poinsot e¢ a/.1987) and since the

configuration contains many features in common with real combustion chambers.
Our attention will be also focused on flame stabilization and flame-wall interaction.

1 Laboratoire EM2C, C.N.R.S. and Ecole Centrale Paris, France

2 Institut de Mecanique des Fluides de Toulouse and CERFACS, France
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These issues have been addressed previously using DNS and RANS approaches

(Poinsot 1996, Poinsot et ai.1996, Bruneaux et a/.1996) but have not received much

attention in the context of LES. Our first goal is to propose a LES technique which

correctly reproduces flame wrinkling, at least when the flow is dominated by large

structures, and handles flame-wall interactions and stabilization regions in a phys-
ical manner without ad hoc corrections.

The different techniques proposed for LES of premixed combustion will be briefly

summarized in Section 2. Our decision to investigate the thickened flame (TF)

model, initially proposed by O'Rourke and his coworkers (Butler & O'Rourke 1977,
O'Rourke &: Bracco 1979), will be explained.

Section 3 will present the configuration studied and Section 4 the numerical code

and the boundary conditions. The stabilization studies are described in Section

5, and Section 6 presents flame response to inlet velocity fluctuations. The effect

of numerical parameters controlling this response (LES treatment, perturbation

amplitude, thermal conditions on inlet sections) is also discussed.

2. LES techniques for turbulent premixed combustion

2.1 LES framework for combustion

Assuming that G is the LES filter and x the location, any filtered quantity Q is
defined as:

- /7Q(x,t) = O(x,t)a(x- x')dz' (1)

For reacting flows, a Favre filtering is defined as:

o¢)
-fiQ= pQ= pQ(x,t)G(x-x')dx'

oo

(2)

where _ is the filtered density. The previous definition is similar to Favre averaging,
widely used in RANS context.

Filtering the conservation equations controlling reacting flows introduces un-

known quantities to be modeled: (1) u'i--_j - uiuj, the unresolved Reynolds stresses,

which requires a subgrid scale turbulence model; (2) u'_k - _iYk, the unresolved

species fluxes, where a simple gradient expression is usually assumed:

Sc Oxi (3)

with VT the su.u.bgrid kinematic turbulent viscosity and Sc the turbulent Schmidt

number; (3) uiT- FiT, the unresolved heat fluxes, also modeled by a gradient ex-

pression; (4) Y_T- YkT and YkT" - YkT", the species-temperature correlations,

occurring when specific heats Cp are expressed in terms of polynomial approxima-

tions of T, which are usually neglected; and (5) the filtered reaction rate _k.

In the following, our attention will be focused on modeling the filtered reaction

rate &k. The other terms have been addressed in previous studies. The Reynolds
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stresses are generally described using Smagorinsky or Germano dynamic models

whereas unresolved turbulent transports are expressed with gradient expressions.

No attempt has been yet conducted to take into account counter-gradient transport

evidenced by theory (Libby & Bray 1981, Bray et a1.1989) or DNS (Veynante et

al.1996, Veynante & Poinsot 1997b) in LES.

One difficulty is encountered for large eddy simulations of premixed flames: the

flame thickness _0 is in the range of approximately 0.1 to 1.0 mm and is generally

smaller than the LES mesh size A. Accordingly, species mass fraction and temper-

ature profiles are very stiff variables, thus the flame front cannot be resolved on the

computational mesh. To overcome this difficulty, two main approaches have been

proposed: simulation of an artificially thickened flame (TF) or use of a flame front

tracking technique (G-equation).

_.1 Arrhenius law based on filtered quantities (Arrhenius model)

A first simple model is to neglect subgrid scale contributions and to write the

reaction rate as an Arrhenius law for filtered quantities:

(4)

Such simple expressions assume perfect mixing at subgrid scales and implicitly

assume that turbulent time scales, rt, are shorter than chemical time scales, re

(rt << re). The reaction zone thickness is also assumed sufficiently large to be re-
solved on the LES mesh size. This formulation is generally used for reacting flows

in atmospheric boundary layers (Nieuwstadt, 1997) but is not relevant in most

combustion applications. Segregation factors may be also introduced to correct Ar-

rhenius expression to account for unmixedness. Specific Arrhenius-type expressions

incorporating combustion delays and changes due to subgrid scale mixing may also
be derived in an ad-hoc manner, for example Kallasanath (1985,1991).

_._ The field equation (G model)

In this approach (Kerstein et al., 1988), the flame surface is described as an

infinitely thin propagating surface (i.e. flamelet). In using this approach, one

tracks the position of the flame front using a field variable G. The flame surface

is associated with a specific isolevel G = G*. The gradients in the G-field can be
much smoother than those of the progress variable c to the point where they can be

resolved on the LES mesh. Work in progress on the use of G equation has shown the

potential but also the difficulties of this approach (see Bourlioux et al.1996; Pinna

et a1.1996, 1997, Im et al.1996, Veynante and Poinsot 1997a).

_.3 Random vortex me_hod_ (RVM model)

Random vortex methods are another class of models suitable for LES of premixed

combustion. In this grid-free approach, chemistry may be handled in a Lagrangian

manner by following flame elements. Examples of such approaches may be found

in Ghoniem et al.(1988, 1992).
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2.4 The thickened flame model (TF model)

The key idea of the thickened flame (TF) model is to consider a flame having
the same laminar flame speed st but a larger flame thickness than the actual actual

flame in order to be resolved on the LES computational grid (Butler and O'Rourke

1977, O'Rourke and Bracco 1979). Following simple theories of laminar premixed

flame (Williams 1985, Kuo 1986), the flame speed sl and the flame thickness 6t may
be expressed as:

a
slcx ¢a¢_ ; 6toc --

sl

where a is the thermal diffusivity and Ik¢ the total reaction rate. Then, an increase

of the flame thickness 60 by a factor F while maintaining a constant flame speed
s o may be achieved by replacing the thermal diffusivity a by Fa and the reaction

rate W by I;V/F as summarized in Table I. Numerically, such a transformation is

performed simply by dividing the pre-exponential constant and the Prandtl and the

Schmidt numbers by the thickening factor F.

Table I: Comparison between normal (superscript 0) and thickened flame (super-
script 1). The thickening factor is F.

Flame Flame

speed thickness
Preexponential Prandtl Schmidt
Factor

Normal flame s_ 6o A ° po S o

Thickened flame s] = s o 6] = F6 ° A' = A°/F P°/F S°/F

For sufficiently large values of the factor F, the thickened flame front may be

resolved on the LES computational mesh. In practical applications, values of 6_
(estimated by 6_S°L/a __ 4) are of the order of 0.2 to 1 mm so that thickening factors
F of the order of 3 to 10 should suffice for many practical simulations. Based on

Arrhenius law, the TF model has the advantages that it can handle ignition and
flame-wall interaction processes without any sub-model.

However, thickening the flame front may have the following two undesired effects.

First, the flame propagation may be affected when small scales are present in the
flow because these structures could become unable to wrinkle the thickened flame

front (Poinsot et al. 1991). For combustion instabilities, this drawback may not be
crucial because of the large values of the ratio of the vortex size L to the flame

thickness 6_. Second, the sensitivity of the flame to stretch is also increased by F

because of the transformation. The thickened flame will react to a stretch of x_/F as
the actual flame would to a stretch of _. Many DNS of turbulent premixed combus-
tion tlave suggested that, in the mean, the effect of stretch on the local flamelets was

not strong (Haworth & Poinsot 1992, Baum et al.1994, Trouv6 & Poinsot 1994) but'
increasing this effect by a factor F of the order of 10 may have unexpected effects,
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for example on quenching. Note however that this difficulty is also encountered in

the G-equation approach where strain effects on the displacement speed have to be

introduced in an ad-hoc fashion because the G model is, by construction, insensitive
to stretch.

3. Objectives and configuration

Our objective in the present work is to investigate the limits of the TF model for

large eddy simulations of combustion instabilities in premixed burners. The issues

mentioned before will be analyzed by computing the same flow (prototype of a

combustion instability in a premixed burner) with both "normal" and a "thickened"

flame descriptions. The normal flame is described using a classical DNS formulation.

For thickened flame simulations, no LES model is used for the flow itself: our

objective is just to qualify the TF approach independently of the LES turbulence

model. Furthermore, for the present two-dimensional simulations, no small-scale

turbulence is present. These TF simulations are in fact DNS where the flame

characteristics have been changed according to the relations summarized in Table I.

For future studies in three-dimensional flows, an additional coupling model between

the turbulence LES model and the TF model should be incorporated.

¥-1
INLET

y-b

SYMMETRY AXIS

WALL OUTLET

y-0

_TRY AXIS

xmO xsXmax

FIGURE 1. Numerical configuration corresponding to the premixed propane/air

burner used by Poinsot et a/.(1987) to investigate combustion instabilities. The

actual burner has five injection slots.

The numerical configuration, displayed in Fig. 1, corresponds to the turbulent

premixed propane-air experimental burner of Poinsot et ai.(1987). This burner

is dominated by multiple instability modes corresponding to acoustic eigenmodes

of the whole combustion system (including compressor and inlet pipes). Observed

frequencies range between 440 Hz and 590 Hz. The strongest mode occurs at 530 Hz

for an equivalence ratio ¢ of 0.92 and a total flow rate rh of 73 g/s (flow conditions

are summarized in Table II).
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Table II: Flow conditions for the 530 Hz instability mode (Poinsot et a/.1987).

U0 is the inlet velocity, co the sound speed, v0 is the kinematic viscosity of fresh

gases, l and b are respectively the burner and the step thickness (see Fig. 1).

¢ s7 u0 co = c0//v0 U0(Z- b)lvo Frequency
(m/s) (m) (m/s) (m/s) acoustic inlet (Hz)

0.92 0.40 1.1 10 -4 42 345 2.1 105 3950 530

For the flow conditions in Table II, the whole system resonates at a frequency

of 530 Hz while mushroom-like vortices are shed at the same frequency from all

five injection slots. These structures are not created by hydrodynamic instabilities

(which are also observed but at a higher frequency) but are due to strong simulta-

neous velocity surges in the five injection slots. These vortices grow, are convected,

and interact with vortices issued from neighboring slots, leading to small-scale tur-

bulence and intense heat release. The time delay between the velocity surge leading

to the formation of these vortices and the peak heat release is an essential param-

eter for all combustion instability models (see Crocco & Cheng 1956, Crocco 1969,

McManus et al.1993, Candel et a/.1996). Estimating this delay does not require one

to take into account the whole system and the acoustics which induce the vortex

formation itself. A proper strategy is to create a vortex by pulsating the combus-

tion chamber inlet flow field and to study the effect of this vortex on the overall

combustion process.

4. Numerical technique and protocol to study flame response

This study is conducted using the NTMIX code, a two-dimensional DNS solver

developed by CTR and Ecole Centrale Paris and described in Veynante _ Poinsot

(1995) or Veynante et al.(1996). The full compressible reacting Navier-Stokes equa-

tions are solved assuming perfect gases with constant molar mass and a specific

heat ratio _, = 1.4. The thermal conductivity _ and the diffusion coefficient 79 are

obtained from the dynamic viscosity coefficient p according to

)_ = l_Cp/Pr and 79 = p/(pSc), (5)

where the Prandtl number Pr and the Schmidt number Sc are constant. As a

consequence the Lewis number L_ = Sc/Pr is also constant. The viscosity p is a

function of temperature according to p = #_(T/Tu) n where n = 0.76.

The computational domain is L_ x L_ with N_ x Ny grid points. Boundary

conditions (Fig. 1) correspond to a partially blocked inlet (blockage ratio b/l of

85 %) on the left, non-reflecting boundary conditions on the right, and symmetric

boundaries on both sides. The velocity profile at the inlet is a tanh function with

a thickness By.

An important difficulty in studying combustion delays is that excitation proce-

dures have to be performed on a given baseline flow. Either this baseline flow is
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stable and the flame response might not correspond to the one expected for unstable

cases, or the baseline flow is unstable and measuring a transfer function becomes

extremely difficult because the flow is dominated by its own instability (similar
difficulties are encountered for DNS of non-reacting flows in absolutely unstable

regimes). Experimentally, the only possible approach is the first solution: Poinsot

et al.(1986), for example, have measured the reflection coefficient of a premixed
flame but only for stable regimes close to instability. Numerically, however, it is

possible in certain cases to create a stable baseline flow in a regime which should

be unstable by slightly changing the expression of the reaction rate. Indeed, theo-

retical studies of combustion instabilities indicate that one main factor promoting

instabilities is the dependence of the reaction rate on pressure (i.e. on density) as

evidenced by the Rayleigh criterion which states that instability occurs when pres-

sure and total heat release oscillate in phase (Crocco 1956, McManus et a/.1993).

Poinsot and Candel (1988), for example, verified numerically that an anchored flame

was more likely to become unstable when flame speeds were pressure dependent.

This suggests the following approach. Assuming that fuel is the deficient species

controlling the reaction rate &F:

then for the pressure sensitive (PS) case, any pressure increase (corresponding to

an increase of the density p) will also increase the reaction rate. To inhibit this
effect, a second expression called PI (pressure insensitive) is also used:

where P0 is a constant reference pressure. The PI expression makes the reaction

rate insensitive to pressure waves and cuts an important link in the combustion

instability loop.

The PS and PI expression will give the same results for a stable flame (for exam-

ple, an unconfined flame). However, only the PI expression can produce a stable
baseline flow in ducted flows.

5. Stabilization and baseline flows for ducted flames

The different runs presented in this report are summarized in Table III. Runs B2,

$4, $5 and $7 correspond to DNS (flames with normal thickness _) while runs M1,
$3, $6, and S9 correspond to thickened flames (by a factor F ranging from 2.5 to

7.5). Runs B2, M1, $6, and $9 correspond to the same physical flow (Re = 75000)

where the computation is performed with DNS for B2 (F = 1) and with various

values of the thickening factor F: 2.5 (M1), 5 ($6), and 7.5 ($9). Runs $4, $5, and

$7 correspond to DNS with a lower Reynolds number (Re = 15000). Two thermal

conditions have been tested for the blockage wall lying between y = 0 and y = b at

the inlet (Fig. 1). This wall may be adiabatic (adiabatic wall, called AW) or cooled
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with an imposed temperature T,o = 2"1 where T1 is the inlet gases temperature

(cooled wall, called CW in Table III).

Table III: Flow conditions for the DNS and LES of ducted flames. For all flows:

Uo/co = 0.1; the Reynolds number Re is = col/vo; the temperature change through
the flame front is Tz/Tx = 4 (a = (T2 - Tx)/T2 = 0.75); the sound speed in the

fresh gas is co (and 2c0 in the burnt gas); the activation temperature Ta is such

that/_ = aTa/T2 = 7; the box height is I/L = 1; the flame Mach number s_/co is

0.0032; the blockage is 0.85 (b/l = 0.85). 6] is the flame thickness after thickening

(67 = r6°).

RUN I/6_ Re F RR Wall 6y/l Xrnax/l N_ Ny
cond. cond.

$3 9.6 75000 5 PS AW 0.03 9 150 64

$4 9.6 15000 1 PI CW 0.01 9 150 64

$5 9.6 15000 1 PI CW 0.01 12 200 64

$6 9.6 75000 5 PI AW 0.03 9 150 64

$7 9.6 15000 1 PI AW 0.01 9 150 64

$9 6.4 75000 7.5 PI AW 0.03 9 150 64

M1 19.2 75000 2.5 PI AW 0.03 9 300 128

B2 48 75000 1 PI AW 0.03 9 750 300

These conditions do not correspond exactly to the experiment of Poinsot et

al.Although the geometry is the same, the Reynolds number of the largest sim-

ulation (B2) is only one third of the experiment. Our goal, however, is to validate
the TF methodology and, for the moment, no detailed comparisons are performed

with the experiment.

5.1 Effects of formulations of& on stabilization

All computations are initialized with an oblique flame starting behind the step us-

ing temperature and fuel mass fraction profiles corresponding to a one-dimensional

laminar premixed flame for the same equivalence ratio. Starting from this field,

the simulation evolves without external excitation until a steady state is reached

or when a well established oscillation is found. Figure 2 compares the temporal
evolution of the total reaction rate for PS and PI formulations in cases $3 and $6.

The PS formulation leads to oscillations both in transverse (fl/co '_ 1) and longi-
tudinal modes (fl/co "" 18) of the computational box. On the other hand, the PI

formulation leads to a constant reaction rate and a steady flame regime.

5._ Effect of inlet wall thermal condition

Figure 3 shows velocity vectors and the reaction rate field for run S5 in the vicinity

of the injection slots. This flow exhibits a recirculation zone having a length of about

7.7b. The gas temperature inside this recirculation zone controls the anchoring of
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FIGURE 2. Effect of reaction rate formulation on flow stabilization: (a) case $6:

pressure insensitive form; (b) case $3: pressure sensitive form. Time evolution of

total burning rate (adiabatic walls).
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| t o • • .L ° • _ •

FIGURE 3. Zoom on velocity vectors and reaction rate field in the vicinity of the

injection slot (Cold Wall - run $4).
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II (a)

FIGURE 4. Reaction rate field. Effect of wall condition on the flame stabilization:

(a) Cold wall (CW, run $4); (b) Adiabatic wall (AW, run $7).

the flame. These hot gases are produced by combustion and recirculated behind

the step but may also be cooled by the wall. Therefore the thermal conditions on

the wall between y = 0 and y = b are important parameters (see Fig. 1).

Any heat losses in the vicinity of the recirculation gas have a strong effect on the

steady flame position but also on its response to unsteady pulsations. Two thermal

conditions have been tested for this wall. The adiabatic wall (AW) condition (run

$7) allows the flame to start on the wall while the cooled wall (CW) condition

(run $4) inhibits reaction near the wall and forces the flame to be lifted as shown

by the reaction rate fields in Fig. 4. The flame length is also increased and the

characteristic flame time is changed (see next Section).

6. Transfer function of premixed ducted flames

6.1 Methodology

Once stable flames are obtained, their transfer function may be studied by inject-

ing acoustic disturbances through the inlet. The inlet velocity profile is modulated

here according to the following expression:

(s)

Examples of a flame excited with Ui+c = 1, Uott_ig/1 = 0.5 and Uotwidth/l = 0.6

are displayed in Fig. 5 for run $6 (see table III). The formation of a large reacting
vortex is observed. The shape of this vortex is similar to the mushroom vortices

observed in the experiment of Poinsot et al.(1987). Because of the AW condition
used for the wall, the flame remains anchored at all times on the wall.

Figure 6 shows that the total heat release lags the inlet flow rate by a delay

r "" 2.51/Uo. This delay directly controls the instability modes since the period T

of most combustion instabilities is of the order of 2r (Crocco & Cheng 1956, Poinsot

et al.1987). However, the delay obtained through such a simulation must be used

with caution because it depends on multiple parameters. In the following, three

parameters will be investigated: (1) the thickening parameter F of the TF model,
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(a)

(c)

FIGURE 5. Pulsated premixed flame ($6) computed using the TF model (thick-

ening factorF = 5). Temperature _eld. (a) Uot/l = 0.S, (b) Uot/t = 1.6, (¢)
Uot/l = 2.4.
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FIGURE 6. Time evolution of inlet flow rate (--), total reaction rate (-----)

and outlet flow rate ( .... ). Run $6 with F = 5.
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corresponding to the LES treatment of the reaction rate, (2) the wall condition
+(cold or adiabatic), and (3) the excitation amplitude Ui. c.

6._ Effects of LES treatment (thickening factor F)

The Re = 75000 case was computed with thickening factors F = 1 (run B2, 750
× grid 300 points), F = 2.5 (M1,300 x 128 points), F = 5 ($6, 150 x 64 points)

and F = 7.5 ($9, 150 x 64 points). As the flame becomes larger (F is increased),

the grid size N_ × Ny may be reduced, decreasing the computational time. The

excitation parameters are U+c = 1, Uottrig/l = 0.5 and Uotwidth/l = 0.6. Figure 7
shows the time evolution of the total reaction rate for these four simulations.

1.8--

1.6-

1.4-

1,2-

1.0-

0.8-

I I I I I I

.; o .;. _ . *""

I I I I I I

0 1 2 3 4 5 6 7

Reduced time (Uot/l)

FIGURE 7. Effects of the thickening factor F (LES treatment of the reaction rate).

The normalized total burning rate is displayed versus time. Comparison between

DNS, F = 1 (run B1, _ ), LES with F = 2.5 (M1, .... ), F = 5 ($6, _ )

and F = 7.5 ($9,- ....... ). Excitation parameters axe U+c = 1, Uottrig/l = 0.5 and

Uotwidth/l = 0.6.

The general evolution of all flows is similar: differences of the order of 20% are

observed for the total reaction rate. However the shapes of the reaction rate curves

are different: the DNS (F = 1) burns initially faster than the LES cases but more
slowly in the late stages of the interaction. This finding is consistent with the TF

formalism: less flame surface is created for LES runs than for DNS, leading to a

reduced combustion, because the sensitivity of a thickened flame to a hydrodynamic

perturbation is lower than the one of a thin flame as shown by Poinsot et al.(1991).

Later on, however, the additive reactants injected during the excitation have to

burn, leading to a larger combustion rate in the LES computations.

Figures 8 and 9 display fields of instantaneous reaction rates for the four compu-

tations at times Uot/l = 1.6 and Uot/l = 2.8, respectively. These plots confirm the

thickening of the reaction zone when the factor F is increased. This thickening af-
fects flame wrinkling in complex ways: the DNS creates a first pocket of fresh gases
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in the burnt products earlier than the three LES runs. More flame surface is also

generated. This flame surface is mainly due to small scale wrinkling, which leads

to the formation of small pockets. These pockets are burned out rapidly. On the

other hand, less small pockets are initially created in the LES cases so that a large

pocket of fresh reactants is consumed later. This phenomenon becomes dramatic
for the F = 7.5 LES run where the evolution of the flow after Uot/l = 1. differs

from the DNS result by 30% because most of the flame wrinkling is missed.

(b)

(cl)

FIGURE 8. Instantaneous reaction rate fields at time Uot/l = 1.6. Comparison

between DN£ (a), LES with F = 2.5 (b), LES with F = 5 (c) and LES with F = 7.5

(d). See caption of Fig. 7 for runs characteristics.

6.3 Effects of inlet wall condition

Figure 10 compares two DNS simulations (runs $5 and $7) for an excitation

corresponding to Ui+c = 1, Uottrig/l = 1.5 and Uotwidth/l = 0.6. Run $5 is similar to

$4 (only the box length is different) and performed with a cold wall (CW) condition

on the inlet wall while $7 assumes an adiabatic wall (Reaction rate contours for both

flames under steady conditions are displayed on Fig. 4).

Figures 11 and 12 display fields of reaction rates for these two computations at

reduced times Uot/l = 2.4, 3.6, 4.8 and 6. The flame stabilized behind a cold
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FIGURE 9. Instantaneous reaction rate fields at time Uot/1 = 2.8. Comparison

between DNS (a), LES with F = 2.5 (b), LES with F = 5 (c) and LES with F = 7.5

(d). See caption of Fig. 7 for runs characteristics.

wall (Fig. 12) reacts later to excitation than the adiabatic flame (Fig. 11) but more

strongly. Large differences both in delay and amplitude are observed, demonstrating

the importance of the condition chosen for the inlet wall. Two factors explain these

differences: (1) the CW flame lies closer to the recirculating burnt region than the

A'VV flame and, therefore, 'feels' the vortex with less amplitude and at a later time

than the AW flame, and (2) the reaction rate of the CW flame is very small near

the injection slot because of heat losses while the AW flame burns everywhere with

the laminar flame speed. The resulting pattern of this 'flame-vortex' interaction

is, therefore, extremely different. The effects of this boundary condition appear to

be as strong as the thickening factor F used in the TF model. This shows that

the LES of the purely propagating flame (handled with the TF model) is only one

aspect of CFD for combustion instabilities of confined flames and that factors such

as boundary conditions and flame stabilization could play a crucial role.

LES with cold wall conditions are not presented here because specific treatments

of wall heat fluxes will be required for these cases. Dividing Pr by a factor F

thickens the flame but also increases heat transfer to the walls by the same factor
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FIGURE 10. Effects on inlet wall condition. Normalized total burning rate versus

time. Comparison between adiabatic wall (AW - $7) (--) and cold wall (CW -

ss)

-I
(a)

(d)

FIGURE 11. Fields of reaction rate for simulation S7 (DNS, adiabatic wall): (a)

Uot/l = 2.4, (b) Uot/l = 3.6, (c) Uot/l = 4.8 and (d) Uot/l = 6.
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i i, --

K_-- m

(d)

_
@

Fl(:tJttE 12. Fields of reaction rate for simulation $5 (DNS, cold wall): (a)

Uot/l = 2.4, (b) Uot/l = 3.6, (c) Uot/l = 4.8 and (d) Uot/I = 6.

F. This could be avoided by an adequate treatment of wall fluxes but remains to

be investigated.

6.4 Effects of excitation amplitude

Most models for combustion instability are linear. It is, however, well-known

that flame response is strongly non-linear, and the excitation amplitude to pulsate

flames has to be chosen carefully. Figure 13 shows flame response for an LES

run ($6, F = 5) for three excitation levels: U+c = 0.1, 0.5, and 1. In all cases,

Uott_ig/l = 0.5 and Uotwidth/l = 0.6. For low levels of excitation amplitude (10% of

incoming velocity for U/+c = 0.1), the delay is much longer than it is in cases with

more intense perturbations. Examination of the instantaneous flow fields reveals

that no pocket is formed for case Ui+c = 0.1. Flame wrinkling is higher in the two

other cases where the flame is shred by the vortical field.

6.5 Theoretical analysis of the thickened flame response

The response of a thickened flame to an excitation is now analyzed. Our objective

is to propose a simple model explaining the findings of Fig. 7 and 13. Under the

flamelet assumption, the flame stretch K measures the increase in flame surface

area A (Candel & Poinsot, 1991):

1 dA

It"- A dt (9)
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FIGURE 13. Effects of excitation amplitude. Normalized total burning rate versus

time for Ui+_ = 0.1 (--), Ui+c = 0.5 (.... ) and Ui+_ = 1 (--). Run $6

(F = 5).
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FIGURE 14. Analysis of the initial flame response. The normalized total burning

rate is displayed versus time. Bold lines correspond to numerical results (already

displayed on Fig. 7), thin lines (--) are fits according to Eq. (10). DNS, F = 1

(run B1, -- ), LES with F = 2.5 (M1, .... ), F = 5 ($6, ........ ) and F = 7.5

($9, ----- ). Excitation parameters are U+c = 1, Uottrig/l = 0.5 and Uotwidth/l =
0.6.
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FIGURE 15. Estimation of the efficiency function C (see Eq. 10) plotted as a

function of the length scale ratio r/6] between the size of the perturbation and the

artificial thickness of the flame. The continuous line (--) corresponds to the

efficiency function CMp estimated by Menevean and Poinsot (1991). Excitation

parameters are Uottrig/l = 0.5, Uotwidth/l = 0.6 and U+c = 1.0 (.), U+c = 0.5 (o)
and Ui+c = 0.1 (,).

Assuming that the local reaction rate per unit of flame surface area is almost con-

stant along the flame front, the total reaction rate W is proportional to the flame

area A and depends on the mean stretch in the same way.

In our simulations, the mean stretch is mainly due to the strain _, which is in

turn due to the vortex generated by the inlet velocity perturbation. But, following

Meneveau and Poinsot (1990), an efficiency function C depending on the ratio
between the vortex size r and the flame thickness 8t has to be introduced to take

into account the reduced ability of small vortices to wrinkle the flame front. Then,

integrating Eq: (97 leads to an estimate of the time evolution of the reduced total

reaction rate W/Wo, where I}¢'0 corresponds to the total reaction rate under steady

state operation:

= exp C _t (10)
w0

Estimates of the vortex size r and the strain rate ,_ are now required. One may

propose:

+U0
r _ Uo twidth ; _ _ Uin c- (11)

r

The efficiency function C(r/St) may now be estimated by fitting the expression

(10) on reduced reaction rates displayed on Fig. 7 and 13. Reaction rate fits are

displayed against numerical simulations on Fig. 14 (Only the growing phase of the

total reaction rate is used here). The agreement is quite satisfactory. On Fig. 15,

the efficiency function C(r/6t) is plotted as a function of the length scale ratio r/81
and compared to the efficiency function CMp proposed by Meneveau and Poinsot
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(1991) and extracted from the flame-vortex interaction DNS conducted by Poinsot et

ai.(1991). As expected, the efficiency function C is found to decrease with the length

scale ratio r/_1 with a shape similar to CMp. The discrepancy between C and CMp
is probably due to the difference between present simulations and those of Poinsot et

al.(two vortices interacting with a normal flame in Poinsot et al.DNS, one velocity
perturbation interacting with an oblique flame here), leading to differences in the

estimation of r and _. Another point is that, in our simulation, the flame structure

is modified by decreasing the pre-exponential factor B and the Schmidt number

So, keeping the hydrodynamic perturbation constant. In the simulations of Poinsot

et al., the flame structure remains unchanged whereas vortex size and strength

are modified. Nevertheless, this finding is very interesting because the efficiency

function C(r/_), and more generally an ITNFS-like formulation (see Meneveau

and Poinsot, 1991), could be implemented in the reaction rate expression to correct

the reduced ability of a thickened flame to be wrinkled by small structures. This

point could be investigated from DNS of flame-vortex interactions using various

values of the thickening factor F.

7. Conclusion

The forced response of a flame stabilized behind a step in a geometry correspond-

ing to the experiment of Poinsot et al.(1987) has been studied at different Reynolds
numbers using Direct Numerical Simulations and Large Eddy Simulations based

on the Thickened Flame model. This model allows the computation of a premixed

flame on a coarse grid by increasing its thickness while maintaining its flame speed.
The TF model is able to compute the flame response within 20% when thickening

factors as large as 5 are used. Even though the TF model modifies the flame re-

sponse, its influence is smaller than other parameters which are specifically linked

to combustion instabilities in dump-stabilized flames: the excitation amplitude and

the thermal condition on the wall near the injection slot, for example, are found to

have comparable effects on the flame response. An efficiency function, similar to the

ITNFS formulation proposed by Meneveau and Poinsot (1991), could be introduced

to reduce the modification of the flame response due to the TF model. Accordingly,

the thickened flame (TF) approach seems to be a good compromise for large eddy
simulations of combustion instability in premixed burners.
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On the generation of vorticity at a free-surface

By T. Lundgren I AND P, Koumoutsakos

1. Motivations and objectives

In free surface flows there are many situations where vorticity enters a flow in

the form of a shear layer. This occurs at regions of high surface curvature and

superficially resembles separation of a boundary layer at a solid boundary corner,

but in the free surface flow there is very little boundary layer vorticity upstream of

the corner, and the vorticity which enters the flow is entirely created at the corner.

Rood (1994) has associated the flux of vorticity into the flow with the deceleration

of a layer of fluid near the surface. These effects are quite clearly seen in spilling

breaker flows studied by Duncan & Philomin (1994), Lin & Rockwell (1995) and

Dabiri & Gharib (1997).

In this paper we propose a description of free surface viscous flows in a vortex

dynamics formulation. In the vortex dynamics approach to fluid dynamics, the

emphasis is on the vorticity vector which is treated as the primary variable; the

velocity is expressed as a functional of the vorticity through the Biot-Savart integral.

In free surface viscous flows the surface appears as a source or sink of vorticity, and

a suitable procedure is required to handle this as a vorticity boundary condition.

As a conceptually attractive by-product of this study we find that vorticity is
conserved if one considers the vortex sheet at the free surface to contain "surface

vorticity". Vorticity which fluxes out of the fluid and appears to be lost is really

gained by the vortex sheet. As an example of the significance of this, consider the the

approach of a vortex ring at a shallow angle to a free surface. It has been observed

(Bernal & Kwon, 1988; Gharib, 1994) that the vortex disconnects from itself as it
approaches the surface and reconnects to the surface in a U-shaped structure with

surface dimples at the vortex ends. There is a clear loss of vorticity from the fluid

and an acceleration of the surface in the direction of motion of the ring as discussed

by Rood (1994). Since vorticity is conserved the missing vorticity has been flattened
out into a vortex sheet which connects the vortex ends. In a real water-air interface,

the connection is in a thin vortex layer in the air. The completion of vortex lines

along the surface allows one to maintain the physical picture of closed vortex tubes.

When vortex dynamics methods are used for viscous flows with solid boundaries,

a vorticity boundary condition may be determined by following Lighthill's (1963)

discussion of the problem. Lighthill noted that the velocity field induced by the

vorticity in the fluid will not in general satisfy the no-slip boundary condition. This

spurious slip velocity may be viewed as a vortex sheet on the surface of the body.

1 Permanent address: Dept. of Aerospace Engr. & Mechanics, Univ. of Minnesota, Minneapolis,

MN 55455
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FIGURE 1. Definition sketch.

In order to enforce the no-slip boundary condition, the vortex sheet is distributed

diffusively into the flow, transferring the vortex sheet to an equivalent thin viscous

vortex layer by means of a vorticity flux. The vorticity flux is the strength of the

spurious vortex sheet divided by the time increment.

For free surface flows a vortex sheet is employed in order to adjust the irrotational

part of the flow. Unlike the case of a solid wall this vortex sheet is part of the

vorticity field of the flow and is used in order to determine the velocity field. The

strength of the vortex sheet is determined by enforcing the boundary conditions

resulting from a force balance at the free surface.

The physical character of Lighthill's method has led to its direct formulation

and implementation by Kinney and his co-workers (1974, 1977) in the context of

finite difference schemes, and by Koumoutsakos, Leonard and Pepin (1994) in or-

der to enforce the no-slip boundary condition in the context of vortex methods.

Their method has produced benchmark quality simulations of some unsteady flows

(Koumoutsakos and Leonard, 1995). The present strategy can be easily adapted

to such a numerical scheme and can lead to improved numerical methods for the
simulation of viscous free surface flows.

2. Accomplishments

In order to introduce the vorticity generation mechanism, we consider, without

loss of generality, two-dimensional flow of a Newtonian fluid with a free surface

(Fig. 1). We consider the stresses in fluid 2 as negligible, and when not otherwise

stated the flow quantities refer to fluid 1.

2.1 Mathematical formulation

Two-dimensional incompressible viscous flow may be described by the vorticity

transport equation

dw

d-_ = uV_ (1)
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with the Lagrangian derivative defined as

d 0
- +u.V,

dt 0t

where u(x,t) is the velocity, _ = wl¢ = V x u the vorticity, and u denotes

the kinematic viscosity. The flow field evolves by following the trajectories of the

vorticity carrying fluid elements xa and the free-surface points x! based on the

following equation:

where xp denotes xa or x I.

2.1.1 Boundary conditions

The boundary conditions at the free-surface are determined by a force balance

calculation. For a Newtonian fluid the stress tensor is expressed as

T -- -pI + 2/_D. (2)

where D is the symmetric part of the velocity gradient tensor. The local normal

and tangential components of the surface traction force are expressed as ft. T. fi and
Oz. T. t respectively. Balancing these two force components results in the following

two boundary conditions at a free-surface.

1. Zero Shear Stress. Assuming negligible surface tension gradients, balancing the

tangential forces at the free-surface results in

t.D.fi = 0.

This may be expressed
^ ^

_.XTu.t+t._Tu.fi = 0. (3)

For the purposes of our velocity-vorticity formulation we wish to relate this bound-

ary condition to the vorticity field and to the velocity components at the free-surface.

For a two-dimensional flow, by the definition of vorticity in a local coordinate

system, we have
w = fi- Vu. t- i. Vu- ¢_ . (4)

Using (3) we may rewrite (4) as

w -- -2t. Vu. ft. (5)

By some further manipulation the free-surface vorticity may be expressed in terms
of the local normal and tangential components of the velocity field;

_u

w = -2-0_ s • fi (6)
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= -20u. fi Oft
0s +2u. 0s (7)

= _2 0u" ft
0s +2u.ia (8)

where tc is the curvature of the surface, defined by t_ = t. 0ft/0s. For steady flow,

where the free-surface is stationary, ul • ft is zero and the first term on the right in

(8) drops out. The steady version of (8) was given by Lugt (1987) and by Longuet-

Higgins (1992), the unsteady form by Wu (1995). A three-dimensional version of

(5) was derived by Lundgren (1989).

The sense of (8) is that vorticity develops at the surface whenever there is relative

flow along a curved interface. This condition prevents a viscous free-surface flow

from being irrotational. Enforcing the vorticity field given by the above equation

at the free-surface is equivalent to enforcing the condition of zero shear stress.

2. Pressure Boundary Condition. This is the condition that the jump in normal

traction across the free-surface interface is balanced by the surface tension. It is
expressed as

lift. W. ftll = -T.

where T is the surface tension and the vertical braces denote the jump in the

quantity. Using (Eq. 2), this becomes

-Pl + #ft" Vu. ft +p2 = -T_ .

Using the continuity equation, expressed in local coordinates, we get

ft. Vu. ft = -_.Vu.

Therefore

0u. i 0i
+u.--

Os Os

Ou.
U . ft t¢ .

Os

(Ou. i )Pl = P2 +Tt¢ - pv\ Os + u. ft _ (9)

where P2 is the constant pressure on the zero density side of the interface.

Since pressure does not occur in the vorticity equation, the pressure condition

must be put in a form which accesses the primary variables. From the momentum

equation at the free-surface we obtain

^ dUl _ 10pl

t. dt p Os + vft. Vw- g3"t (10)

where g is the gravitational constant; ._ is upward.
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For our purposes this equation may be put in a more tractable form by further

manipulation. First we observe that

_. dux dul • i dt
dt - dt + Ul " d_

and
di di

ul . = u l . fi fi . d-t .

Then using the fact that the free-surface is a material surface we obtain the kine-
matic identity

=

Oul • fi
U 1 "_ t_ .

as

Using this identity we find

• i Oul • fi 1 Opl
dt = ul • fi Os ul "i ul • fi to- -mp Os

+ w - 9.;. i. (11)

We emphasize that the material derivative here is taken following a fluid particle
on side 1 of the interface.

With pl substituted from (9), this formula may be regarded as equivalent to the
pressure boundary condition. Except for the flux term all the terms on the right-

hand-side of the equation are quantities defined on the surface and derivatives of

these along the surface. We prefer to think of the role of the vorticity flux in this

equation as a term which modifies the surface acceleration, rather than consider
that the equation determines the flux.

Using a strategy analogous to Lighthill's for a solid wall, we propose a fractional

step algorithm that enforces the pressure boundary condition in a vorticity-velocity

framework. This strategy allows us to gain insight into the development and gen-

eration of vorticity at a viscous free surface and can be used as a building tool for
a numerical method.

3. A fractional step algorithm

In order to show that the free-surface boundary conditions are satisfied in a

velocity-vorticity formulation, we consider the evolution of the flow field during a
single time step. In a manner similar to Lighthill's approach for a solid boundary,

a vortex sheet is employed to enforce the boundary conditions. The vortex sheet

becomes part of the vorticity field of the flow. The difference between the solid wall

and the free surface is the role of the surface vortex sheet in adjusting the velocity
field of the flow. In the case of the solid wall, the vortex sheet is eliminated from the

boundary (so that the no-slip boundary condition is enforced) and enters the flow
diffusively, resulting in the flux of vorticity into the flowfield. In the case of a free
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surface, the vortex sheet remains at the surface to enforce the pressure boundary

condition and constitutes a part of the vorticity field of the flow. The task is to

determine the strength of the vortex sheet at the free surface so as to satisfy the

boundary conditions.

For the purpose of describing this process, we assume that the velocity and the

vorticity field are known at time t" throughout the flow field and at the free surface,

and we wish to obtain the flow field at time tn+l( - t n + St).

Step 1. Given the velocity and vorticity at time t" we update the positions of the

vorticity carrying elements and the surface markers by solving dxp/dt = u(xp, t);

+1=xp" + 5tu"(x )

We update the vorticity field by solving

dw
-- : V_7202
dt

with initial condition w = w" at t = t n and boundary condition w = wn(x/)

at x = xf. The solution to this equation, which we denote by w n+1/2, is still

incomplete. It does not satisfy the correct vorticity boundary condition at the end

of the time step and must be corrected in step 2. The boundary condition which

we have imposed ensures (rather arbitrarily) that the vorticity on the boundary is

purely convected. The correction which is needed will be a vortical layer along the

free-surface with vorticity of order 6t and with thickness of order (6t) 1/_. We reason

that the additional velocity field induced across this layer can be neglected since its

variation is only of order (St) 3/2.

For an incompressible flow the velocity may be expressed in terms of a stream

function ¢ by

. = -k × v¢ (12)

and the vorticity itself is related to ¢ by

w -/_. V × u = -V2¢. (13)

We use the convention that fi is always outward from the fluid, i is the direction of

integration along the surface, and _" = fix t is a unit vector out of the page. The

solution of this equation gives

¢ = ¢,, + _b._ (14)

1 t

] co(x_, t)lnlx - x, Idxa (15)-
fluid

and _/,-_represents an irrotational flow selected to satisfy boundary conditions. It is

consistent with vortex dynamics to take this irrotational part as the flow induced

by a vortex sheet along the boundary of the fluid, i.e. by

1
[ 7(xl(s'),t)ln Ix - xl(J)[ds' , (16)¢_(x,t) - 2_r
.J

intfc

where
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but it must be shown that this can be done in such a way as to satisfy the boundary
conditions. In this formulation the boundary can be either solid or free or a mix

of these, but in this paper we are specifically interested in free boundaries which

separate an incompressible fluid from a fluid of negligible mass density. The velocity

field is obtained by applying (12), giving the Biot-Savart law;

u(x,t) = u_(x,t) + u_(x,O (:7)

where

and

I f W(Xu,t) t x Vlnlx-x.ldx. (X8)u_(x) = 2-;
fluid

1/u_(x) = _ _(x1(s),t) k × Vln Ix-x/(_)ld_. (19)
intfc

The velocity field is also defined by these integrals for points outside the fluid; u,_

is continuous across the interface, and u. t has a jump discontinuity. As the position

vector x tends to a point on the interface from inside the fluid, which we will indicate

with a subscript "l", we get

("_ _)'= _(_)2e.v._ f _(_',,)_. Vlnlx,(s)- _,(s')lds' (20)
intfc

while as the point is approached from the outside, indicated by "2",

(.., •i)_= -"-T-',y(s)_ P.V._ f r(,',t) ,_. VlnI,,,(,)- ,,,(,')ld,'
intfc

21

Here P.V. indicates the principal value of these singular integrals. By subtracting

these equations it is clear that the vortex sheet strength is the jump in tangential
velocity across the interface; since u,,. t is continuous, we have

7 = u2" i-u,.i. (22)

By (17) and (20) the tangential component of the surface velocity is

P.V._ f 7(s',t),_.Vlnlx,(s)-x,(s')lds' = ua._-(u_.fh
intfc

(23)

Equation (23) is a Fredholm integral equation of the second kind the solution of

which determines the strength (7) of the free surface vortex sheet when the right-

hand side is given. In the case of multiply connected domains the equation needs to
be supplemented with m constraints for the strength of the vortex sheet, where m+I

is the multiplicity of the domain (Prager, 1928). For example, in the case of a free
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surface extending to infinity, no additional constraint needs to be imposed as the
problem involves integration over a singly connected domain. However, in the case
of a bubble, an additional constraint such as the conservation of total circulation in

the domain needs to be imposed in order to obtain a unique solution.

The right-hand side of the equation may be determined from the quantities which

have been updated. In particular u,, can be computed via the Biot-Savart integral
(18) from the known vorticity field w '_+1/2 with order 6t accuracy. The tangential

component of the velocity of the free surface can be computed using (11) in the
form

Ow
(ul • i)n+l = (ul • i)n + btQn(Ul,fi,_,U__n,pl)

where Qn signifies the right-hand side of (11) evaluated at time t n. The pressure

boundary condition enters the formulation of the problem at this stage. Upon

solving (23) the strength of the vortex sheet is determined such that the pressure
boundary condition is satisfied, justifying the previous assertion. We should add

that (23) admits more than one solution in multiply connected domains, such as

a two-dimensional bubble configuration, but unique solutions may be obtained by
using Fredholm's alternative.

Note that the present method of enforcing the pressure boundary condition is

equivalent to previous irrotational formulations (Lundgren & Mansour, 1988, 1991)
which employ a velocity potential.

At the end of this step the points of the free-surface, the velocity field, and the

strength of the vortex sheet have been updated (xp n+l, u n+l and 7n+1). The
vorticity field (w _+1/2) still needs to be corrected near the free surface.

Step 2. At this step we consider generation of vorticity at the free surface. Hav-

ing determined the strength of the vortex sheet from Step 1, we can compute the
normal and tangential components of the velocity field at the free surface in order

to determine the free surface vorticity and enforce the zero-shear stress boundary
condition.

Using (14,15,16) we can compute an updated value of the stream function on the

surface and from this compute Ul • fi = O¢/Os. Since the surface shape and ul •

have already been updated, we have all the ingredients necessary to compute an

updated value of Wl from (3). The next step in this process is to solve the vorticity

transport equation for the vorticity field using wl as boundary condition. For the
final partial step we need to solve the heat equation,

0w

-_- = uV2w, (24)

with initial condition w = 0 at t = t n, and with the boundary condition

 (xl) = (wl'+1 - -

assuming a linear time variation of the surface vorticity between the two time lev-

els. The solution of this partial step is to be added to wn+l/2' thus yielding the
completely updated vorticity field w n+l.
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An analytical solution for this diffusion equation can be obtained using the

method of heat potentials (Friedman, 1964). For a two-dimensional flow the solu-

tion to the above equation may be expressed in terms of double-layer heat potentials
as

t+6t / OGw(x,t + St) = _Tn, (x - xl(s'),t - t')p(s',t')ds' dr'
dt

intfc

where G is the fundamental solution of the heat equation and the function p(s, t) is

determined by the solution of the following second order Fredholm integral equation:

/,+6,/ OG+ - - dr' =
Jt

intfc

Following Greengard and Strain (1990) and Koumoutsakos, Leonard and Pepin

(1994), we can obtain asymptotic formulas for the above integrals. Similar formu-
las could help in the development of a numerical method based on the proposed

algorithm.

This update strategy was posed without requiring any particular numerical meth-

ods for the computational steps. We have particular methods in mind, however,

for using this strategy for future numerical work. We will use a boundary integral

method similar to that used by Lundgren & Mansour (1988, 1991) for the surface

computations. That work was for irrotational inviscid flow. Instead of the pressure

boundary condition in the form of (11), an unsteady Bernoulli equation was used

to access the pressure.
For the vortical part of the flow we propose to use the point vortex method

employed by Koumoutsakos et al (1994, 1995) for viscous flow problems with solid

boundaries. In these problems the Lighthill strategy provides a vorticity flux bound-
ary condition for the second step in the vorticity update, a Neuman condition. In

the proposed free-surface strategy, a Dirichlet condition is required for the second

vorticity step. This modification can be accomplished by using double layer heat

potentials (as suggested above) where single layer potentials were used in the solid

boundary work.

4. Conservation of vorticity

We will show that vorticity is conserved in two-dimensional free-surface problems;

vorticity which flows through the free-surface doesn't disappear, but resides in the

vortex sheet along the surface. (This is shown for general three-dimensional flows

in the Lundgren and Koumoutsakos (1998).)

In the interior of the fluid it is easy to show from Helmholtz's equation that

 eA= (25)
A_ $I

where A1 isa material"volume" and S1 its"surface",n isoutward from the region,

and -vOw�On isthe vorticityfluxin the outward direction.This says that the
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vorticity in A1 increases because of viscous vorticity flux into the region; there are
no vorticity sources in the interior of the fluid.

Everything we need to know about the velocity on side 2 is contained in (1 7,1 8,1 9).
We will only use the fact that, because the velocity on side 2 is irrotational, there

must be a velocity potential(u2 = V02). We use d/dt to mean the material deriva-

tive along side 1, and note that u2 - ul = "_t, then by some simple manipulations

du2 Ou2
-- + Ul " _7U2 (26)dt Ot

Then

[0¢2 1
= V k--_-- + _u2 • u_) - 7i. VTt- 7t" Vul .

dt 0s + _u2- u2 - q'2 -- 7i" VU 1 • i . (27)

The last term in this equation is the strain-rate of a surface element and may be
expressed as

1 d ds (28)
i. Vul.[- ds dt '

where ds is a material line element on side 1. Subtracting (10) from (27) then gives

-_d7 as a_3'd O-s_\--_-O(0¢21 1 2 Px gy]/+ --;--;;ds = + -_u2 "u2 - _7 + -- + - ufi • Vw.
z Z P

(29)

This may be written

with 02 given by

d Ow 002 ds
_Tds = -v-_n ds - (30)

[0¢_2 1 1 2 ] Pl02=- --+ _u2"u2-- _7 +gY P
(31)

If we integrate (30) over a material segment along the interface we obtain

d
b b b

7ds = - / Ow 002 dsU-o_ndS - /Os " (321
a a a

From this form we see that 02should be interpreted as a surface-vorticity flux. Since

7 is a density (circulation density or surface-vorticity density) the last term in (32),
which may be written 02a - 02b, is the flux of surface-vorticity into the interval at a

minus the flux out at b, while the first term on the right is the flux of vorticity into
the interval through the surface.
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If the interval is extended over the entire interface, by extending it to infinity for

an "ocean" or continuing b around to a for a closed interface like a bubble, we get

d
= - v_-_--_ds.d-Tf-rds / ,,,, (33)

intfc intfc

Now letting A1 in (25) be the entire fluid, we get

d = v_--_ds .

fluid intfc

(34)

Adding (34) and (33) gives

-dr wdA + -_ 7ds = O. (35)
fluid intfe

It is in this sense that vorticity is conserved.

We began this approach as an attempt to obtain an evolution equation for 7

which would eliminate solving an integral equation, (23), to update 7. Equation

(29) or (30) might appear to play such a role, but the occurrence of the velocity

potential ¢2 in the equation makes it unuseable for this purpose. Since ¢2 could be
expressed by an integration over the surface involving 7, the time derivative of ¢2

would involve a surface integral of dT/dt therefore an integral equation for dT/dt

would result, defeating the purpose.
A similar result can be shown for the conservation of vorticity in three-dimensionai

flows (Lundgren and Koumoutsakos, 1998).

_.I Pedley problem

A problem solved by Pedley (1968) as part of a study on the stability of swirling

torroidal bubbles gives an example which illustrates some concepts discussed here.
One can describe the flow as a potential vortex of circulation F swirling around

a bubble cavity of radius R. The flow is induced by a vortex sheet of strength

70 = F/2rR at the bubble interface. At some initial time one turns on the viscosity
and vorticity begins to leak from the vortex sheet into the fluid. The circulation at

infinity remains constant; therefore, the strength of the vortex sheet must decrease
with time.

We pose this problem in the form described in Section 2. Since the flow is axially

symmetric the vorticity satisfies

_- = t/kOr2 + -r_- (36)

The vorticity boundary condition (8) is

wl = -2VI/R , (37)
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where 1/1 = ul • { is the tangential component of the velocity at the interface (with

the tangent convention used earlier V1 is negative for positive swirl), and R is the
constant radius of curvature of the surface. The pressure boundary condition (11)
is

ov, _ (3s)

The velocity inside the bubble is zero so u2. { = 0. The strength of the vortex sheet

is therefore 7 = -1/1, a positive quantity. The sense of the problem is that since

wl is required to be non-zero, a layer of positive vorticity must develop in the fluid.

The resulting flux of vorticity out of the interface causes 3' to decrease with time.

Equations (37) and (38) may be combined into a single boundary condition

Owl 2u Ow

Therefore, the problem is to solve (36) with this boundary condition and with

initial conditions w = 0 for all r > R and w = 270/R for r = R. This last condition
prevents the trivial solution.

For large 7-(_--ut/R 2) Pedley gives an approximate solution;

rTo [ r 2
w =_---A'--_exp_ ) (40)z/xT- 4R---_v

This satisfies (36) exactly but has a relative error of order 7--x in the boundary

condition. For small r another approximate similarity solution is

2")'0 z,. X

= + 47-) + 2v )
ZVT

(41)

where x = (r - R)/R. This solution satisfies the boundary condition exactly but

neglects the last term in (36), requiring that v be small enough that the vortical

layer is thin compared to the radius of the bubble.

Further details of the solution are unimportant here. This problem illustrates

both conservation of vorticity and generation of vorticity when there is flow along
a curved free-surface.

5. Conclusion

In this paper we have presented a strategy for solving free surface viscous flow
problems in a vortex dynamics formulation. This strategy centers on determining

suitable boundary conditions for the vorticity in analogy with Lighthill's strategy

for solid boundary flows. The two free surface boundary conditions play distinct

roles in determining free surface viscous flows. We have shown that the pressure
boundary condition determines the strength of a vortex sheet at the free surface,

which determines the irrotational part of the flow. The pressure force modifies the

surface velocity, from which the vortex sheet strength is found by solving an integral
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equation. The zero shear stress boundary condition, on the other hand, determines

the value of the vorticity at the surface, providing a Dirichlet condition for the

vorticity equation.

We have shown that vorticity is conserved for both two- and three-dimensional

free surface flows, the vortex sheet being considered part of the vorticity field. It

follows that vorticity which might appear to be lost by flux across the free surface

now resides in the vortex sheet. It was shown in the appendix that vorticity is

conserved for two viscous fluids in contact across an interface. It is physically clear

that, in the limit as the density and viscosity of one of the fluids tend to zero, the

vorticity in that fluid would be confined to a thin surface layer. Vorticity would

then be conserved in the remaining fluid plus a contribution in the surface layer.

Therefore, the conclusions we draw for free surface flows are physically reasonable

for real fluids.
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Active control of turbulent channel flow

By P. Koumoutsakos

1. Motivations and objectives

The active control of turbulent flows is gaining recognition as a possible means

for greatly improved performance of aerospace and marine vehicles. While pas-

sive devices have been used effectively in the past, active control strategies have

the potential of allowing a significant improvement in the performance of future

configurations.

Along with small and robust sensors and actuators, simple yet effective control al-

gorithms, which are based on measurable flow quantities, are needed to make active

feedback control of turbulence a reality. An algorithm for active feedback turbulent

flow control (herein referred to as opposition control) was first introduced by Choi,

Moin and Kim (1994). In the opposition control approach, the vertical motion of
the turbulent flow near the wall is countered by an opposing blowing/suction dis-

tribution of velocity on the wall. Using this technique a 25% drag reduction was

obtained by counteracting the velocity field sensed sty + _ 15. Though the oppo-

sition control algorithm is simple and effective for viscous drag reduction, it has

the substantial drawback that it requires measurements inside the flow domain. In

order to alleviate this difficulty, Lee et al. (1997) employed a neural network to

construct a simple feedback control algorithm using information only at the wall.

Their methodology was shown to reduce skin friction by about 20%.

We outline here a novel feedback control algorithm using information that can
be obtained at the wall. This framework relies on the identification of the near-

wall structures via their induced wall vorticity flux. The present control scheme is
based on the manipulation of the vorticity flux components, which can be obtained

as a function of time by measuring the instantaneous pressure at the wall and

calculating its gradient. An algorithm is presented which allows for the explicit

calculations of the necessary control strengths. Application of the present control

scheme to low Reynolds number turbulent channel flow produced drag reduction of

up to 40% using wall information only. Moreover, it appears that using the present

methodology open-loop control laws can be devised.

Further details of the present methodology and the results discussed herein can

be found in Koumoutsakos (1997,1998) and Koumoutsakos et. al. (1997).

2. Accomplishments

The present scheme (Koumoutsakos, 1997) is based on the manipulation of the

vorticity creation at a wall, using wall information only. The pressure field is sensed

at the wall and its gradient (the wall vorticity flux) is calculated. Blowing/suction

at the wall is the actuating mechanism and its strength is calculated explicitly by

formulating the mechanism of vorticity generation at a no-slip wall.
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In wall bounded flows, the tangential motion of fluid elements relative to the wall

establishes velocity gradients. With the definition of vorticity (to) as the curl of

velocity (w = _7 x u), this may be equivalently described in terms of the vorticity
that is acquired by the fluid elements near the wall. (Lighthill, 1963) envisioned the

wall as a system of sources and sinks of vorticity.

We consider a cartesian coordinate system and flow over a flat wall identified with

the xz plane, normal to the y-axis. The vorticity flux vector is then expressed as:

.=
For an incompressible viscous flow over a stationary wall, the vorticity flux is directly

proportional to the pressure gradients, as the momentum equations reduce at the

wall to (Panton 1984):

w p\Oz/w w

where P is the pressure and wx and w_ are the streamwise and spanwise vorticity

components. Note that the flux of the wall normal vorticity, wy, may be determined
from the kinematic condition (V •w = 0).

2.1 Measurements of _he wall vorticity flux

In order to assess the practical implications of the proposed algorithm, we out-

line some research efforts associated with measurements of the vorticity flux. Ex-
perimental measurements of the wall vorticity flux in a turbulent flow have been

reported by Andreopoulos and Agui (1996). Their measurements demonstrated the

significance of vorticity flux in describing near wall processes. They observed that

fluid acquires or loses vorticity at the wall during rather violent events followed

by periods of small fluctuations. Their experiments demonstrated that the major

contributions to the vorticity flux come from the uncorrelated part of the pressure

signals, at two adjacent locations, which contain a wide range of vortical scales. As

the degree of correlation is smaller between the small scales, their contribution to

the vorticity flux is more pronounced. This imposes a severe requirement on the

spatial resolution of the pressure gradients/vorticity flux measurements. Practical

applications (Moin & Bewley 1995) would require actuators and sensors with sizes
in the order of 50prn and actuator frequencies of 1MHz. Recent advances in micro

pressure sensor fabrication technology (Ho & Tai 1996) give us an opportunity to

overcome these difficulties. L5fdahl et. al. (1996) presented measurements in a
two-dimensional flat plate boundary layer with a resolution of eddies with wave

numbers less than ten viscous units using microscopic silicon pressure transducers.

It appears that using this new technology one may be able to describe in detail

physical processes in terms of the wall vorticity and the wall vorticity flux.
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2._ Vorticity fluz induced by blowing and suction at the wall

The role of the vortieity flux from oscillating walls as a mechanism for the control

of unsteady separated flows was discussed by Wu et al. (1993). They concluded

that wall oscillations can produce a mean vorticity flux that is partially responsible

for phenomena of vortex flow control by waves. Gad-E1-Hak (1990) has shown that

the vorticity flux can be affected by wall transpiration as well as by wall-normal

variation of the kinematic viscosity (u) as a result of surface heating, film boiling,

cavitation, sublimation, chemical reaction, wall injection of higher/lower viscosity

fluid, or in the presence of shear thinning/thickening additive.
However, these works do not provide us with an explicit formulation for the

actuator strength necessary to induce a desired vortieity flux at the wall. This may

be achieved by considering the generation of vorticity at the wall as a fractional

step algorithm (Lighthill 1963).
At each time step (6t) the no-slip boundary condition can be rendered equivalent

to a vorticity flux boundary condition (Koumoutsakos, Leonard, & Pepin 1994)

which is materialized in successive substeps. During the first substep we consider

the inviscid evolution of the vorticity field in the presence of solid boundaries. The

no-through flow boundary condition is enforced via the introduction of a vortex

sheet "r(s) along the surface (s) of the body. The vortex sheet is equivalent to

a spurious slip velocity on the boundary that needs to be eliminated in order to

enforce the no-slip boundary condition. This is achieved at the next substep of

the algorithm as the vortex sheet enters diffusively into the flow field. When 3' is
eliminated from the body surface in the interval It, t + 6t], the circulation (P) of the

flow field would be modified according to:

ft+6t dP3"(s)ds = dr'
,It

(1)

On the other hand, Kelvin's theorem states that the rate of change of circulation

induced to the fluid elements due to the presence of the body is:

d'--t- = u s) ds (2)

If we consider this vorticity flux to be constant over the small interval of time (6t),
we will have:

Ow

= -3"(s)l t (3)

This constitutes then a Neumann type vorticity boundary condition for the vorticity

field equivalent to the no-slip boundary condition (Koumoutsakos, Leonard, & Pepin

1994).

This formulation helps us determine the vorticity flux induced by a set of actu-

ators such as ideal sources/sinks located at the wall. Without loss of generality
we consider a two-dimensional flow over a flat wall and a system of sources/sinks

of strength qj that are distributed uniformly over a panel of size dj, centered at
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locations x_, j = 1, 2, 3, ...N. When the sources/sinks are switched on, the induced

tangential velocity at point xi on the wall and the corresponding vorticity flux can
be determined as:

_(xi)Ow _N . [dj/2
j=l J-dj/2 X _ S (4)

' The methodology outlined herein may be formulated for awhere x = xi-xj.

variety of actuators, such as wall acceleration, deformation, etc.

3. An active control strategy

For the purposes of our control scheme we consider a series of vorticity flux (or

equivalently pressure gradient) sensors on the wall at locations xi, i = 1, 2, 3, ...M.

Using the formulas described above we can explicitly determine the actuator strengths

necessary to achieve a desired vorticity flux profile at the wall at a time instant, k,

by solving the linear set of equations:

Buk + Xk-1 = Dk (5)

/OWkgX X Ow L[ x X Ow n / _x
where Dk = _-_-_ _ l j, --_-_ t 2;,..., --_-_(xm)) is an M x 1 vector of the desired vor-

• OwL- 1 Own- l OwL- t
ticity flux at the sensor locations, Xk-1 = (_(zi), _(x2),...,--_-_- (XM))
is an M x 1 vector of the measured vorticity flux at the sensor locatl"ons and

uk = (q_(x_),qk2(X'2),...,qk(x'N)) is an g x 1 vector of source strengths at the

actuator.locations, B is an M x N matrix whose elements B_ 1 are determined by

evaluating the integrals in Eq. 4. The unknown source/sink strengths are deter-

mined by solving the system in Eq. 5. If the relative locations of the sensors and

actuators remain constant, matrix B need be inverted only once, thus minimizing

the computational cost of the method.

We may distinguish between in-phase control (implying enhancement of the wall

vorticity flux) by selecting Dk = 2Xk-1 and out-of-phase control (implying cancel-

lation of the induced vorticity flux) by selecting Dk = 0.

Moreover, the present technique gives us the flexibility to adapt the actuator

strengths to specific constraints. In the present calculations the requirement of zero
net mass flux

N

qi = 0

j=l

is easily incorporated in the above scheme by appropriately adjusting matrix B. A

square, invertible matrix is always possible by accordingly modifying the number

of sensors and actuators. The simplicity of the present scheme allows for a number

of different placements of sensors and actuators. Here we chose the locations of

sensors and actuators to be collocated. Physically this may be understood as an

advantageous situation as the sensors are able to detect the vorticity field induced

by the actuators, which allows the control scheme to suitably compensate for it.



Active control of turbulent flows 293

X

FIGURE 1. Contour plots of streamwise vorticity flux (top), Spanwise vorticity

flux (middle) and shear stresses (bottom) in a controlled turbulent channel flow.

Black (positive) and white (negative) color coding is used for the plots.

4. Control of turbulent channel flow

Simulations of the model problem of vortex dipole-wall interactions (Koumout-

sakos, 1997) have revealed that the present control scheme can alter drastically these

interactions. In-phase control results in the "trapping" of the primary vortices by

the enhanced secondary vorticity field. The out-of phase control has resulted in

the absorption of the impinging dipole and the establishment of small oscillating

vortical structures over the wall. These structures are maintained by the present

algorithm as the system constantly reacts to the production of the vorticity induced

by the actuators.
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FIGURE 2. Contour plots of actuator strengths. Black (blowing) and white
(suction) color coding is used for the plots.
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FIGURE 3. Skin friction drag on the bottom wall of the controlled and uncontrolled
flow.

We present here some results from the application of this vorticity-flux control

algorithm on a low Reynolds number turbulent channel flow (Re_. = 200).

The numerical method (Le, Moin and Kim 1997) is a fractional step algorithm in

primitive variables (u - P), using central finite differences for spatial discretization

and a third order Runge-Kutta time advancement scheme. The channel dimensions
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are 21r, 2.10, 2.0 for the streamwise, spanwise, and wall normal direction. Simula-

tions were carried out with a grid resolution of N, × Nz × Nu = 128 × 64 × 128. A
cosine spacing was employed for the grid points in the wall-normal direction. The

non-dimensional discretization is:Ax + _ 12, Az + _ 8, Ay+ _ 0.1 -- 7.

Control is applied only on the bottom wall with a a collocated arrangement of

sensors and actuators. In this arrangement the rows of sensors and actuators are

located at alternating streamwise grid locations on the bottom wall. Their strength

is determined using a technique similar to the two-dimensional techniques already
described.

In the present scheme for three-dimensional flows, the 'desired' and the measured

vorticity flux may be related as:

(:) , ,0,
The coefficients a, b, c, d can be chosen a-priori, and they may be constant or spa-
tinily varying. The parameter space can be optimized for drag reduction/increase.

We have conducted several sets of simulations, varying locally and globally the

coefficients a, b, c, d. Most of our simulations have been conducted with the set of

parameters a = b = c = 0 and d = +1, which is equivalent to considering In�Out of

phase control of the spanwise vorticity flux.

In particular, we present here some results from the out-of phase control. After a
short transient state a drastic modification of the inner wall structure is observed.

The streaks are eliminated, and highly spanwise correlated patterns are established

for the spanwise vorticity flux, the shear stresses (Fig. 1), and the actuator strengths

(Fig. 2). These structures and further flow visualizations (Koumoutsakos, 1998)

suggest the formation of unsteady spanwise vortical "rollers" in the inner layer of
the wall. These spanwise vortical rollers result in the formation of positive and

negative shear stresses at the wall. The spanwise correlation of the near wall struc-

tures persist till about y+ = 15, beyond which the influence of the wall is not

discernible in the flow field. Moreover, the regularity in the resulting actuator

strengths (Fig. 2) suggest that it is possible to devise open loop control laws using

the present methodology (Koumoutsakos, 1998).

The elimination of streaks and the disruption of the near wall processes by the

establishment of the particular vortical "rollers" resulted in skin friction drag re-

duction in the order of 40% (Fig. 3).

5. Conclusions

A new feedback control algorithm (Koumoutsakos, 1997) based on the manipu-

lation of vorticity creation at the wall was outlined. In this scheme the vorticity

flux is sensed at the wall via the measurement of wall pressure. A simple control

strategy allows calculation of the strength of wall transpiration to achieve a desired
wall vorticity flux. Implementation of the vorticity flux feedback control algorithm

in the simulation of a low Reynolds number turbulent channel flow shows a drastic

modification of the near wall vortical structures and indicates high skin friction drag
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reduction (_ 40%). The results of the present simulations suggest that it is possible

to devise open-loop control laws using the present methodology. Work is underway

to implement the proposed strategy in the control of unsteady separated bluff body
flOWS.
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A generalized framework for
robust control in fluid mechanics

By T. Bewley, R. Temam AND M. Ziane

1. Motivation and objectives

The application of optimal control theory to turbulence has proven to be quite

effective when complete state information from high-resolution direct numerical

simulations is available (Bewley, Moin, & Temam 1997a). In this approach, an iter-
ative optimization algorithm based on the repeated computation of an adjoint field

is used to optimize the controls for a finite-horizon nonlinear flow problem (Abergel

& Temam 1990). In order to extend this infinite-dimensional optimization approach
to control externally disturbed flows for which the control must be determined based

on limited noisy flow measurements alone, it is necessary that the control computed

be insensitive to both state disturbances and measurement noise. For this reason,

robust control theory, a generalization of optimal control theory, is now examined

as a technique by which effective control algorithms might be developed for infinite-

dimensional laminar (linear) and turbulent (nonlinear) flows subjected to a wide
class of external disturbances.

The numerical approach proposed to solve the robust control problem is based

on computations of an O(N) adjoint field, where N is the number of grid points
used to resolve the continuous PDE for the flow problem. Note that N --- O(108)

for problems of engineering interest today and may be expected to increase in the

future. Computation of the adjoint field is only as difficult as the computation of
the flow itself, and thus is a numerically tractable approach to the control problem

whenever the computation of the flow itself is numerically tractable. In contrast,

control approaches based on the solution of O(N 2) Riccati equations have not been

shown to be numerically tractable for discretizations with N > O(103).

In its essence, robust control theory (Doyle et al. 1989, Green & Limebeer 1995)

boils down to Murphy's Law (Bewley, Moin, & Temam 1997b) taken seriously:

If a worst-case system disturbance can disrupt

a controlled closed-loop system, it will.

When designing a robust controller, therefore, one should plan on a finite component
of the worst-case disturbance aggravating the system, and design a controller which

is suited to handle even this extreme situation. A controller which is designed to

work even in the presence of a finite component of the worst-case disturbance will

also be robust to a wide class of other possible disturbances which, by definition,

are not as detrimental to the control objective as the worst-case disturbance. Thus,

the problem of finding a robust control is intimately coupled with the problem of
finding the worst-case disturbance, in the spirit of a non-cooperative game.

To summarize the robust control approach briefly, a cost functional fl describing

the control problem at hand is defined that weighs together the (distributed) control
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¢, the (distributed) disturbance w, and the flow perturbation u(¢,w). The cost
functional considered in the present work is of the form

J(¢,w) = ]Clu]2dxdt +

+ [e l¢l 2 - CI I dr.

F da dt

This cost functional is simultaneously minimized with respect to the control ¢ and

maximized with respect to the disturbance w, as illustrated in Fig. 1. The robust
control problem is considered to be solved when a saddle point (¢, @) is reached;
note that such a solution, if

particular interest are:

a. Cl=dlI andC2 =C3 =

b. C1 =d2V× andC2 =C3 =

c. C2=d3I andC1 =C3=

d. C3=d4vI andC1 =C2 =

direction _' integrated over

it exists, is not necessarily unique. Four cases of

0 =_ regulation of the turbulent kinetic energy.

0 =_ regulation of the square of the vorticity.

0 _ terminal control of the turbulent kinetic energy.

0 _ minimization of the average skin-friction in the

the boundary of the domain.

All four of these cases, and many others, may be considered in the present frame-

work; the extension to other linear/quadratic interior/boundary regulation/terminal

constraints is straightforward. The dimensional constants di (which are the appro-

priate functions of the kinematic viscosity v, a characteristic length L0, a charac-

teristic velocity U0, and the volume V0 and the surface area So of the domain f_)
are included to make the cost functional dimensionally consistent.

It cannot be assumed at the outset that a solution to the min/max problem de-
scribed above even exists. However, it is established in the present paper that, for

a sufficiently large 3' and reasonable requirements on the regularity of the problem

(described later in this introduction), a solution to this min/max problem indeed

does exist, with the (finite) magnitudes of the disturbance and the control governed

by the scalar parameters 7 and L To accomplish this, we will extend the optimal

control setting of Abergel & Temam (1990) to analyze the non-cooperative differ-
ential game of the robust control setting in which a saddle point (¢, _) is sought.

The analysis will also account for the possibility of corners in the boundary f_. Our

treatment of the presence of corners in the domain avoids "smoothing" out the cor-
ners as was done in Abergel &: Temam (1990) and thus further extends the optimal

control analysis contained therein.

Note that, for simplicity, only the control problem is considered; the concomi-

tant estimation problem, required to determine the control when only partial flow
information is measured, is closely related to the control problem discussed here.

1.1 An intuitive introduction to robust control theory

Consider the present problem as a differential game between a fluid dynamicist

seeking the "best" control ¢ which stabilizes the flow perturbation with limited
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O.

-3

-0..:

( .5 W--to

O.
q_--q_ Z

FIGURE 1. Schematic of a saddle point representing the neighborhood of a solu-

tion to a robust control problem with one scalar control variable _b and one scalar

disturbance variable w. When the robust control problem is solved, the cost func-

tion J is simultaneously minimized with respect to q_ and maximized with respect

to w, and a saddle point such as (q_, tO) is reached. The present paper formulates

the infinite-dimensional extension of this concept, where the cost J is related to a

distributed control ¢ and a distributed disturbance w through the solution of the

Navier-Stokes equation.

control effort and, simultaneously, nature seeking the "maximally malevolent" dis-

turbance w which destabilizes the flow perturbation with limited disturbance mag-

nitude (Green & Limebeer 1995). The parameter _/2 factors into such a competition

as a weighting on the magnitude of the disturbance which nature can afford to offer,

in a manner analogous to the parameter g2, which is a weighting on the magnitude

of the control which the fluid dynamicist can afford to offer.

The parameter g2 may be interpreted as the "price" of the control to the fluid

dynamicist. The g --* oc limit corresponds to prohibitively "expensive" control

and results in ¢ --+ 0 in the minimization with respect to ¢ for the present problem.

Reduced values of g increase the cost functional less upon the application of a control

¢. A nonzero control results whenever the control _ can affect the flow perturbation

u in such a way that the net cost functional J is reduced.

The parameter "/'2 may be interpreted as the "price" of the disturbance to nature.

The 3, --* cx_ limit results in w --* 0 in the maximization with respect to w, leading to

the optimal control formulation of Abergel L: Temam (1990) for _ alone. Reduced

values of 7 decrease the cost functional less upon the application of a disturbance
w. A nonzero disturbance results whenever the disturbance w can affect the flow
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perturbation u in such a way that the net cost functional fl is increased.

Solving for the control ¢ which is effective even in the presence of a disturbance w,

which maximally spoils the control objective, is a way of achieving system robust-
ness. As stated earlier, a control which works even in the presence of the malevolent

disturbance w will also be robust to a wide class of other possible disturbances.

In the present systems, for 3' < 70 for some critical value 3'0 (an upper bound of

which is established in this paper), the non-cooperative game does not have a finite

solution; essentially, the malevolent disturbance wins. The control ¢ corresponding

to 7 = 70 results in a stable system even when nature is on the brink of making

the system unstable. However, note that the control determined with 3' = 70 is not

always the most suitable as it may result in a very large control magnitude and
may have degraded performance in response to disturbances with structure more

benign than the worst-case scenario. In the implementation, variation of g and 7
provide the necessary flexibility in the control design to achieve the desired trade-

offs between disturbance response and control magnitude required (Bewley & Liu
1997).

1._ Governing equations

We begin with the Navier-Stokes equation for a flow U in an open domain f C ]R3
such that, in f × (0, cx_), we have

OU

--_ - uAU

div U = O,

U=O

U(0) = U0

+ (U. V)U + VP = F,

on Off,

at t=0.

(1.1)

We focus our attention on the case in which the forcing is applied by way of an

interior volume force on the r.h.s, of the momentum equation; the case of boundary
forcing (such as wall transpiration) is closely related and will be treated later. A

stationary or non-stationary solution U(x, t) to this equation with a corresponding

forcing F(x, t) will be referred to as the "target" flow for the control problem. (If
no target flow is known or given, U and F are taken as zero.)

We are interested in the robust regulation of the deviation of the flow from the

desired target (U, F). In §2, we consider the control of the linearized equation which

models small perturbations (u, f) to the target flow (U, F) with Dirichlet boundary

conditions and known initial conditions such that, in f x (0, ¢x_), we have

0u

- vAu + (u. V)U + (U. V)u + Vp = f,
div u = 0,

u = 0 on Off,

u(O) = Uo at t = O.

(1.2)
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In §3, we consider the control of the full nonlinear equation which models large

perturbations (u, f) to the target flow (U, F) such that, in fl × (0, co), we have

_ _,A_+(_.v)u+ (u.V)u+ (u.V)u+Vp = s,
div u = 0, (1.3)

u = 0 on 0ft,

u(0) = u0 at t = 0.

1.3 Mathematical setting

Let ft be a bounded open set of IR3 with boundary Oft, and let ff be the unit

outward normal vector to Oft. We denote by H_(ft), s 6 IR the Sobolev spaces

constructed on L2(ft), and H_(ft) the closure of C_(ft) in H'(ft). Following Temam

(1984), we set X = {u 6 ((C_"(ft))3; div u = 0}, and denote by H (resp. V) the
closureof x in (L_(a))3 (resp. (H'(a))3); wehave

H={uE(L_(ft))3; divu=0inf_, u.ff=0on0ft}

and

V= {u C (H01(ft))3; div u =0 in ft}.

The scalar product on H is denoted by (u, v) = fa u. v dx, that on V is denoted by

((u,v)) = f_ Vu. Vvdx, and the associated norms are denoted by [ • [L' and ][ • ][
respectively. We denote by A the Stokes operator, defined as an isomorphism from

V onto the dual V' of V such that, for u 6 V, Au is defined by

V v 6 V, (Au,v)v,,v = ((u,v))

where (., ")v',v is the duality bracket between V t and V. The operator A is extended

to H as a linear unbounded operator with domain D(A) = (H 2(ft))s O V when 0f_ is
a C 2 surface; the case of a domain ft with corners is treated in §4. We also recall the

Leray-Hopf projector :P, which is the orthogonal projector of the non-divergence-
free space (g2(_)) s onto the divergence-free space H. The Stokes operator is defined

with this projector such that

Au = --P(Au), V u 6 D(A). (1.4)

We shall denote by 0 < A1 < )_2 < ... the increasing sequence of the eigenvalues of

A. Define the bilinear mapping B by

B(u,v) = P((u. V)v), V u,v • V. (1.5)

Note that B is a bilinear mapping from V into V'. Define a continuous trilinear

form b on V such that, with u, v, w • (g I (ft))s, we have

b(u,,,,w) = <B(u,v),,,,)v,,v

= (u. V)v. wdx = ui _xi wjdx,

where Einstein's summation is assumed.
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1.4 Abstract form of governing equations

The operators A and B may be used to write the Navier-Stokes equation in the

"abstract form" useful for mathematical analysis. By application of the Leray
projector to (1.2), noting (1.4), (1.5), and that Pu = u and P(Vp) = 0, the

linearized Navier-Stokes equation, to be considered in §2, may be written in the
form

-_ + uAu + B(u, U) + B(U, u) = 79f,

u _ v, (1.6)

u(O) = uo,

where the regularity required on f, uo, and U are

fEL2(O,T;L2), VT>0; (1.7)
u0 e V; U E C([0,T], V) NL2(0, T; D(A)).

Similarly, application of the Leray projector to the nonlinear form (1.3), to be
considered in §3, gives

du

-_ + vAu + B(u, U) + B(U, u) + B(u, u) = P f,

uE V,

u(O) = uo.

(1.8)

1.5 Control framework

In the control framework, the interior forcing f is decomposed into a control

¢ E L2(0, T, L 2) and a disturbance w E L2(0, T, L2), with T > 0, in the spirit of the

non-cooperative game discussed in §1.1. Thus, we write f as

f = Blw + B2¢, (1.9)

where B1 and B2 are given bounded operators on (L2(fl)) 3. Only the divergence

free part of the forcing f will affect the evolution of the velocity field u, as seen on
the r.h.s, of the governing equations (1.6) and (1.8). Thus, in the remainder of this

paper, we consider only the divergence free part of the forcing by writing

Pf = P(Blw + B2¢)

= 131w +/32¢, (1.10)

where B1 = T'B_ and 132 = PB2 are mappings from (L2(_2)) 3 to H. Note that
the difference f - Pf may be written as the gradient of a scalar and thus will

only modify the pressure p in (1.2) and (1.3). As the solution to the Navier-Stokes

equation in the abstract form is implicitly confined to a divergence-free manifold of

(L2(f/)) 3, the pressure p may be entirely neglected in the mathematical analysis.
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1.6 Important identities and inequalities

We now recall some important properties of the nonlinear operator b, which can

be found, for instance, in §3 of Temam (1984). First, we have the orthogonality

identity

b(u, v, ,,) = O, Vu, veV (1.11)

as a consequence of div u = 0, as shown by integration by parts. Moreover, the

continuity of the nonlinear mapping in various functional spaces are expressed by
the following classical inequalities: there exists a constant C0(fl) such that

Ib(u,v,w)l < Collullllvlll/ZlAol[/21wlL_, V u E V, v E D(A), w • H,

a/4 _/4
Ib(u,_,w)l <_ColUlL2 ImUlL_IIvlIIwlL', V U • D(a), v • V, w • H, ,

Ib(u,v,w)l < Cotul_/41lull3/411vll ,/4 3/4IwlL2llwll , Vu•V, v•V, w•V.

where Co denotes here and throughout this paper a numerical constant whose value

may be different in each inequality.

Note that the mapping u _-* B(u) = B(u, u) is differentiable from V into V'; its
differentia/is defined by

B'(u)v = B(u, v) + B(v, u) V v • V
(1.12)

= •V)v+

Let B'(u)* denote the adjoint of B'(u) for the duality between V and V'; the adjoint

operator B'(u)* is thus defined by

{v, B'(u)w)v,v, = (B'(u)*v,W)v,,v. (1.13)

It follows from integration by parts (Abergel & Temam 1990) that

_(Oui Ovj,w>,,,,,v=
(1.14)

P

= J, ((w)T. v-(w), u).wdx,

where, again, Einstein's summation is assumed.

The use of adjoint operators to define an appropriate O(N) adjoint field will be

central to the development of an efficient numerical algorithm to solve the robust

control problem. For the linear problem described in §2, an appropriately defined
adjoint field reveals the solution {¢, t_} of the robust control problem directly, as

shown in §2.2. For the nonlinear problem described in §3, a solution {¢, t_} of the

robust control must be found by iteration, as discussed in §3.2. At each iteration k,

an adjoint field is computed to determine the gradients :DJ/ID¢ and :DJ/:Dw in the
vicinity of {¢k, wk}. The control ¢k and the disturbance w _ are then updated based

on this gradient information and a new adjoint field computed until the iteration

in k converges and a saddle point for the full nonlinear problem is reached. Proof

of the convergence of such an algorithm is currently under development.
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2. Accomplishments

As discussed in the introduction, the objective in the robus't control problem is

to find the best control ¢ in the presence of the disturbance w which is maximally

aggravating to the control objective. The cost functional considered in the present
work, in the mathematical setting described in §1.3, is given by

+,+Y(¢, W) = _ L'(") 2 L'(Ofl)

(2.1)

+ _ 9_oT [_21¢ 2L_(l))--'Y2lW 2L_(fl)]dr.

where the scalar control parameters 3' and g axe given and b is a known vector field

on 012. The operators C1 and C2 are unbounded operators on (L2(f_)) 3 satisfying

IC,UI_L2<_ aiu[_: +/_]lull 2 for i = 1,2, (2.1a)

with a >_ 0, fl _> 0, a + fl > 0, and C3 is a bounded operator of (L2(0fi)) 3, so that,

by the Trace theorem (Lions &: Magenes 1972), we have

/ Ou _.'_ , 1/2 1/2I(c3=-,r'l I < tclluliH3/2 < t¢ [lull IAUIL2. (2.1b)\ CIn /L_(Ol)) --

where the constants t¢ and mr depend upon 7 and _. In this chapter, the flow u is

assumed to be related to the control ¢ and the disturbance w through the linearized
Navier-Stokes equation

{+
-_ + vAu -4-B(u, U) + B(U, u) = Blw -4-B2¢,

u E V, (2.2)

u(0) = u0,

which models small deviations of the flow perturbation u from the desired target
flow U. The regularity required is given by

¢,w E L2(O,T;L2); BI,B 2 • £(L2,H);u0 • V; V • C([0, T], V) N L2(O, T; D(A)),

and the Stokes operator A, the bilinear mapping B, and other notations are de-

scribed in §1.3. The robust control problem to be solved is stated precisely as:

Definition 2.1 The control _ • L2(O,T,L 2) and disturbance tO • L2(O,T, L2),
and the solution u to (2.2) associated with ¢ and tO, are said to solve the robust

control problem when a saddle point ((_, tO) of the cost functional fl defined in (2.1)
is reached such that

Sup fl(¢, w) < fl(¢, to) < Inf fl(¢, _b). (2.3)
wE L _( O,T,L 2) ¢_EL2(O,T,L 2)

In this chapter, we will establish both existence and uniqueness of the solution to

the robust control problem stated in Definition 2.1, and will present an iterative

adjoint algorithm to solve a two-point boundary value problem to find this solution.
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_.1 Ezistence of a solution of the robust control problem

The proof of the existence of a solution (¢, t_) to the robust control problem is

based on the following existence result:

Proposition 2.1. Let ,.7 be a functional defined on X x Y, where X and Y are

non-empty, dosed, convex sets. If J satisfies

(a) Vw • Y,

(b) V ¢ e X,

(c) 3 w0 e Y

(d) 9 ¢0 e X

¢ _ J(¢, w) is convex lower semicontinuous,

w _ J(¢, w) is concave upper semicontinuous,

such that lim J(¢,w0) = +c_,
114,11x--.+oo

such that lim ,7(¢0, w) = -oo,
Ilwllv--*+oo

then the functional ,.7 has at least one saddle point (_, ffJ) and

,](¢, t_) = Min Sup J(¢, w) = Max Inf J(¢, w).
_EX wEY wEY 4_EX

Proof. See §6 of Ekeland & Temam (1974).

In order to establish conditions (a) through (d) of Proposition 2.1 for the present

problem, we need to analyze the evolution equation (2.2). It can be proven rigor-
ously that, given u0 E V, U e C([0, T], V)N L2(O, T; D(A)), and ¢, w E L2(O, T; L2),

there exists a unique solution u of (2.2) such that

u e L2(0,T; V)tq L°°(O,T,H).

The proof is based on the following "a priori estimates". Multiplying (2.2) with u,
we can write

d lul_,,+_'11,.,11_ < 1 IB,w+Z_,/,I_, +21b(u,U,u)ld-i -

1 Ith,.v+ B2¢1_,+ CollUIIl"lL/,2llull3n-<_T

Hence,

co IIUIl_(t). Then, we have----- sup
Let M0 _- 0<d_<T

eMot /t
lul_,,(t) < I,,ol2,_Mo,+ _,.x---_Jo Ithw + t3_¢1_,,d_ (2.4)
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and

'/0' '/o'
2 L t B 2 2_ _ IB,w + 2¢1L_ds + -vNol_ eM°T

2eM°T L T ]3 2+ _,2A-----7-JX3,w+ 2¢4L_ds.

Similarly, multiplying (2.2) with Au, we can write

(2.5)

d 1
d-t Hull2 + uiAu[_2 <- -vIBiw + B2gP[L, + 2lb(u, U, Au)[ + 2ib(U , u, Au)[

1 2 ,lllaUllLl?< - I_w + B_I_ + CollUII II_IIIAulL,
v

1/4 314
+ ColgiL2 IAUiL2 liulilAulL1.

Letting

MI(T) = C°2 sup (llVll(t)+ IAUIL:(')+ IU(t)I[/_IAU(t)I_/_)
O<t<_T

we have

Therefore

and

d 2 v 2 1 B 2
7/11_11+-_IAUIL_ < -_ IB_w + 2¢iL_+ M_llull 2.

L'Ilull_(t) < li_oll_eM'' + 1-eM" le_ + Bi¢IL, ds
I2

(2.6)

1LtlAul_=ds< 2 Lt B 2 2M, LtT - _7 IB,w + 2¢1L, ds + "-7-- Ilull_ds
(2.7)

The a priori estimates (2.4), (2.5), (2.6), and (2.7) allow us to characterize the

mapping (¢, w) _ u(¢, w). Specifically, we have:

Lemma 2.1. For ¢ E Lu(O,T;L2), the mapping w _ u(¢,w) from L2(O,T;L 2)

into L2(0, T; V) is afnne and continuous. Similarly, for w E L2(0, T; L 2) the map-
ping ¢ _-* u(¢,w) from L2(O,T;L 2) into L2(O,T;V) is aftine and continuous. For

¢ E L2(O,T;L2), the mapping w _ u(¢,W)lT from L2(O,T;L 2) into V is afi_ne

and continuous. Similarly, for w E L2(O,T;L 2) the mapping ¢ _-* u(¢,w)l T

from L2(O, T; L 2) into V is attine and continuous. Furthermore, for u0 E V and
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w 6 L2(O,T;L2), the mapping w _ u(q_,w) has a G_teau derivative _(wl) in ev-
ery direction wx 6 L2(0,T; L_), and ((wl) is the solution of the linear evolution

equation

_ v, (2.s)

_(0) = o,

and it follows that _ E L°°(O, T; V) t3 L2(O, T; D(A)).

Proof. The fact that w _ u(@, w) and @_ u(¢, w) are affine and continuous follows

from the linearity of (2.2) and the a priori estimates (2.4), (2.5), (2.6), and (2.7).

The existence of the G£teau derivative as well as its characterization by (2.8) is
proved in Abergel & Temam (1990), to which we refer the reader for more details.

Remark 2.1. The solution _ of (2.8) can be expressed as a function of wl in

terms of the Green-Oseen 's tensor G( x, t, x', t') (see Ladyzhenskaya 1969); vaguely,
we write

_(z, t) = a(z, t, z', t') wl(z', t') dz' dr' - a . wl.

NotationMly, we will denote G by Du/Dw and _(Wl) by (Du[Dw).wl. Note
that the Green-Oseen's tensor G = Z)u/2)w is an infinite-dimensionM extrapola-

tion of the Jacobian of a finite-dimensional discretization of u with respect to a

finite-dimensional discretization of w, as suggested by this notation. By causality,

G(x,t,x',t') = 0 for t' > t.

With Lemma 2.1 established, we are ready to prove that conditions (a) through
(d) of Proposition 2.1 are indeed satisfied for the present robust control problem:

Lemma 2.2. Let uo E V. There exists 3'0 such that, for 7 > 70, we have

(A) _' w E L2(0, T; L2), ¢ _ ,7(¢, w) is convex lower semicontinuous,

(B) k/¢ E L2(0, T; L2), w _ ,7(¢, w) is concave upper semicontinuous,

(C) lim ,7(¢, 0) = +oo,
[all 2(O,T ;1,:t)"_+ oo

(D) lim ,7(0,w) = -oo.
[W[L 2(O,T ;L 2)--*+O0

Proof. Condition (A): by Lemma 2.1, the map ¢ _-* ,7(_, w) is lower semicontinuous.
As ¢ _-*u(¢, w) is affine, the convexity of _b_ ,7(¢, w) follows promptly.

Condition (B): by Lemma 2.1, the map w _ ,7(¢, w) is upper semicontinuous.

In order to prove concavity, note that it is sufficient to show that

h(_) = ,7(¢,_w_ + w_)

is concave w.r.t. 5, i.e., h"(a) < O. To this end, we compute

T Du dt+(C2u(T),C2D__) Wl) L,(f_ )
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It is clear that ¢(wl ) -- (:Du/T>w) • w] is independent of m. Therefore,

_T C1 _)lt 12 [ :Du(T)12 joTh"(a) = _ww " w, dt + C2 • wl - 7 2 [w, 12L,dr.
L 2 _)W L _

Note that ¢(wl ) satisfies (2.8) by Lemma 2.1. Hence, using the a priori estimates

(2.4), (2.5), (2.6), and (2.7), we have

fo_ C_W' l_ ff ff ff-_-_w.W_ dt < a I¢l_,dt +_ 11¢ll2dt < k] IBlW_12L, dt
L 2

< k, IBxI_(L,,rO Iw_l[, de,

and, similarly,

C2 "Wl <__ kl IBII_:(LLH) Iw,l_, dr.

Now under the assumption that

7 2 > 2kl [BIIC(L2,t/),

we have h"(a) < 0 for a E ]R. Thus the function h is concave, and the concavity of
w _-*fl(¢, w) follows immediately.

Condition (C): Using (2.1b), we can write

_2 2 T

Y(¢,O) >_ _}¢IL_(o,T;L2) - n' fo Ilulll/21Aul_t/_2dr,

and by the a priori inequalities (2.4), (2.5), (2.6), and (2.7), there exists a constant

Co = Co(T,_, ]luoll) such that

fo T <- CO[¢[L'(O,T;L').llull'/21Aul[l_dt

Hence,

_2 A2

,J(_),O) >> -_ W L_(O,T;L 2) -- CoI¢[L_(O,T;L2),

and condition (C) follows promptly.

Condition (D): it follows from (2.4) that

_0 T [C]ul_, dt _o T 2 [WlL,(O,T;L,)]+2 k2,<_ (c_lu[_,_ + 1311ull2)dt <_ k] [[¢_[L,(O,T;L,) +
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and, similarly,

IC2u(T)I2L , <_ (alu(T)l_L2 + ]_[lu(T)II 2) < ka [I¢I_,(O,T;L') + Iwl_'(o,T;L2)] + k2.

Thus, if 7: > 4(kl -b k2) and IWlL2(O,T;L_) > 1, we have

y(O,w) -- _ ICaul_,dt + fi lC2u( )IL'+ C3-_n. ed_ dt - T Iwl_,d+
fl

72 w 2 2
< ---_ L2(O,T;L ) q- ClWlL2(O,T;L2 ),

which implies (D).

Putting the statements of this section together, we have established existence of

a solution (¢, _) to the robust control problem for a sufficiently large 7:

Theorem 2.1. Assume that 7 is su_ciently large so that

7 2 > 4(kl -k k2) and 7 2 > 2kl [_IIE(L2,H),

where
2 Te M°T

kl = _-_ + --u and k2 = A1 luol_2 e M°v.

Then there exists a saddle point (_, tb ) and u( _b,tb) such that

3"(¢,w) < 3"(¢,_) < 3"(¢,t_), V ¢,w in L2(O,T;L2).

Proof. The proof follows promptly from Lemmas 2.1 and 2.2 and Proposition 2.1.

2._ Identification of the unique solution to the robust control problem

The existence of a saddle point (¢, tb) of the functional ,:7 implies that

Z)J(¢, tb) = 0. (2.9)vY(_,_)=0 and b--w-wV¢

Define an adjoint state by the equation

dA ,

--_ + uA*A + B'(U)*A = ClCl u,

e Vr = {v e (Ha(f_))a; div v = 0 in 12,

_(T) = C_C2 u(T),

where A* is defined by

(u,A*)_)L2:(Au,)_)L,--(Ca OuO---n' r') L'(Ofl)

, = c_e on O_},

for u E D(A), and A E Vr.

(2.10)
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We have the following:

Lemma 2.3. Let U E L°°(O, T; V) N La(0, T; D(A)), and let u be the solution of

(2.2), _i(h), i = 1,2, h E L2(O,T;L 2) the solution of

{ d¢i
 i(o) = o.

Then

for i = 1,2,

(2.11)

Now we prove

Theorem 2.2. Let (¢, _) be a solution of the robust control problem stated in
Definition 2.1. Then

1 /3* I B; i, (2.13)
¢=-_- _A and t_=_-

where A is found from the solution (fi, i ) of the following coupled system:

-_ + uAft + B'(U)_ = B1B; - B2B_ _,

--_ + vA*A + B'(U)*A = C;Clfi, (2.14)

 ,ey, levr,
fi(0) --- uo and _(T) = C_C2 u(T),

) L.(O,)at'

where B_ is the adjoint of Bi for i = 1, 2.
Proof. The proof follows from integration by parts and the regularity of u, _i and A:

+ uA*X + ,_i/L_(l._ )_ dt

+ (A(T),_i(T))L,(f_) + _0 T (Cs_i,F)L,(Ofl)dt
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which admits a unique solution for 3` > 3`0([B1 [_(L2,H), [B2[_(L2,H), _).

Proof. A necessary condition for (¢, _) to be a saddle point of the functional/7 is

lPJ - T),]" (_, t_). h2 = 0, V hi E L2(0, T; H).
-_-_-(¢, t_). hi = 0 and

Thus,

j_o T _Dw L2(n)

_T ( 0 .DU . hl,_) dt_3`2_T (,t_,hl) dt - 0.
+

x C3 _ _)W L_(c3ft) L2(fI)

and

"_ On De L2(Ofl) L_(Q)

Hence, by (2.12),

Jo_(/3;X-3`2_,h,).<.e+=0, vh,e L2(0,r;U)

and

fo"(B;x+e'_,h,)_,(°e+=o, V h2 E L2(0, T; H),

which implies that (2.13) follows from the definition of the coupled system given in
(2.14).

The uniqueness of the solution of the coupled system (2.14) is classical. For 3' sub
/3"ficiently large [3' > 70([BII£(L2,H), [/32[£(LU,H),e)], we have (3`-2/31/3; -- f-2/32 2)

is positive definite. The proof of uniqueness then follows by multiplying the fi equa-

tion by _ and the _ equation by fi, integrating between 0 and T, and then adding

the two resulting equations.

2.3 Generalized framework

We now identify all possible sources of forcing in the two-point boundary-value

problem (2.14) and thereby establish a generalized framework for which the ap-
proaches discussed herein can be applied to a wide variety of problems in fluid
mechanics.
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Oft

ft

Oft
0 t T

FIGURE 9. Schematic representation of the domain over which the flow field u is

computed. The arrow indicates the direction in time that the p.d.e, is marched.

The space-time domain over which the flow field u is computed is illustrated in

Fig. 2. The possible regions of forcing in this system are:

a. the r.h.s, of the p.d.e., indicated by _, representing flow control by interior

volume forcing (e.g., externally-applied electromagnetic forcing by wall-mounted

magnets and electrodes);

b. the b.c.'s, indicated by [7-/_, representing flow control by boundary forcing (e.g.,

wall transpiration);

c. the i.e.'s, indicated by f_, representing the optimization of the initial state in

a data assimilation framework (e.g., the weather forecasting problem).

Only the first of these cases is treated in detail in the present work.

Oft

ft

Oft
0 t T

FIGURE 3. Schematic representation of the domain over which the adjoint field )_

is computed. The arrow indicates the direction in time that the p.d.e, is marched.

The space-time domain over which the adjoint field )_ is computed is illustrated in

Fig 3. The possible regions of forcing in this system are:

a. the r.h.s, of the p.d.e., indicated by _, representing regulation of an interior

quantity (e.g., turbulent kinetic energy);

b. the b.c.'s, indicated by _, representing regulation of a boundary quantity

(e.g., wall skin-friction);

b. the i.e.'s, indicated by _, representing terminal control of an interior flow

quantity (e.g., turbulent kinetic energy).

All three possible locations of forcing of the adjoint problem are considered in the

present framework. Note that an interesting singularity arises when considering the
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terminal control of a boundary quantity such as wall skin-friction. The (inhomoge-

neous) boundary conditions on the adjoint field for such a case are the same as in
the corresponding regulation problem with a delta function applied at time t = T.

3. Future work

We are currently repeating the analysis of section 2 for the nonlinear problem.

As mentioned in the introduction, this analysis will account for corners in the do-

main fL The analysis of existence of the solution for the nonlinear problem and

the characterization of a simple gradient search routine (with fixed step size) to

find this solution are both straightforward, though results are only available for a)

small initial data, b) small T, or c) a 2D domain. Such a restriction is a direct

consequence of the fundamental lack of a complete mathematical characterization

currently available for the 3D Navier-Stokes equation, not a shortcoming of the

present analysis.

In addition, we are attempting to establish rigorously the convergence of practical

gradient search algorithms for the iterative solution of the robust control problem.
To be practical, such algorithms must have variable step size, perhaps updating ¢

to minimize ,,7 in the direction _9(f/79¢ and/or updating w to maximize ,7 in the

direction Dff/:Dw at each step of the iteration. Further, the initial guess of the
solution (¢0 w 0) must, in general, be considered to be "far" from the nearest solu-

tion (¢, _) of the robust control problem. A thorough mathematical understanding

of such a search algorithm is essential before testing these ideas numerically, as

gradient searches for a saddle points even in low dimensional problems may eas-

ily get caught in limit cycles or fail altogether unless the optimization problem is

thoroughly understood.
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Combined immersed-boundary/B-spline methods
for simulations of flow in complex geometries

By J. Mohd-Yusof

1. Motivation and objectives

For fluid dynamics simulations, the primary issues are accuracy, computational

efficiency, and the ability to handle complex geometries. Spectral methods offer

the highest accuracy but are limited to relatively simple geometries. In order to

accommodate more complex geometries, finite-difference or finite-element methods

are generally used. However, these methods suffer from relatively low accuracy,

requiring fine meshes to obtain good results. Finite element schemes, while able

to handle complex geometries, often require significant computational time for grid

generation. Spectral element methods can be used for complex geometries, but

the grid stretching inherent in these methods leads to timestep limitations and

clustering of grid points in an inefficient manner.

In general, any computational scheme which requires re-gridding to accommo-

date changes in geometry will incur significant penalties in simulating time-varying

geometries. For relatively simple motions, it is possible to use grid-stretching tech-

niques, (Carlson et al., 1995), but these are still slow. Vortex element methods for

moving bodies (Koumoutsakos, 1995) are presently under development but are also

rather slow, especially with respect to calculation of spectra.

To address these problems, we propose a discrete-time immersed boundary method

which will allow implementation of complex moving geometries in existing pseu-

dospectral codes. The method does not incur significant additional cost as com-

pared to the base computational scheme, and changes in surface geometry simply

require modification of the input files without any further modification of the code

itself.

2. Accomplishments

The immersed boundary method has been successfully implemented and tested in

the B-spline/Fourier pseudospectral numerical scheme of Kravchenko el al. (1996).

The interpolation scheme developed for this application makes use of the compact

properties of the B-spline transform to maintain the highest possible order at the

immersed surface. The combined scheme has been successfully tested on the laminar

ribbed channel case of Choi, Moin and Kim (1991) (hereafter CMK).

_.1 Immersed boundary concept

We begin with an examination of the continuous (in time and space) Navier-Stokes

equations to demonstrate the principle of the immersed boundary technique. We

consider incompressible flows governed by the Navier-Stokes equations, including

the body force term:

-_ = -H - VP + V2u + f (1)
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and the continuity equation:

V.u = 0 (2)

where Re is the Reynolds number, u = (u,v,w) is the velocity vector, H = u×w

- (gu, H_, gw) is the convective term, and f = (fu, f_, fw) is the forcing vector.

The full Navier-Stokes equations allow the inclusion of an external body force. In

incompressible flows, this force is generally assumed to derive from some potential

field (e.g. gravity) which is constant and therefore may be neglected. However, the

NS equations themselves allow the force to be a function of both time and space.
In that event, the divergence of the force may be non-zero and therefore must be

included in the Poisson equation for pressure if that equation is used to solve the
system.

The immersed boundary method involves specifying the body force term in such a

way as to simulate the presence of a flow boundary within the computational domain

without altering the computational grid. The advantage of this is that bodies

of almost arbitrary shape can be added without grid restructuring, a procedure
which is often time-consuming. Furthermore, multiple bodies may be simulated and

relative motion of those bodies may be accomplished at reasonable computational
cost.

The concept of the immersed boundary technique has been used for pseudo-

spectral simulations of flows in complex geometries (Goldstein et al. 1995). How-
ever, the timestep restriction imposed by their derivation severely limits the ap-

plicability of the method to turbulent and other strongly time-dependent flows.
This restriction can be removed by the use of a discrete-time derivation of the forc-

ing value (Mohd-Yusof 1996). When combined with appropriate choice of internal

boundary conditions, this scheme leads to a forcing scheme which does not require
any filtering of the forcing field.

A second issue of importance to the immersed boundary method is the ability

of the underlying numerical scheme to place a sufficient number of grid points

near the immersed boundary to adequately resolve the flow scales in that region.

While the grid geometry may be considerably simplified as compared to a body-
fitted grid, there is still a fundamental need to tailor the grid point distribution to

the underlying flow scales. To this end, we employ a B-spline formulation, which

allows flexibility of grid point distribution, zonal embedded grids, and high accuracy

(Kravchenko et al. 1996). Coupled with Fourier-pseudo-spectral methods, this

yields a numerical scheme which allows simulation of flows in complex geometries
on Cartesian grids with near-spectral accuracy.

2._ Numerical method

We now consider the discrete-time Navier-Stokes equations in general form:

Un-I-1 __ U n ]

At - -H- VP + _V2u + f (3)

We wish to drive the velocity, u, on some surface, fl, to some desired value, v(fl).

Rearrangement of the discrete NS equation gives us the velocity update equation
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which is of the form:

u "+1 = u" + At(-H - VP + _--_eV2u + f) (4)

If we know H, VP and V2u then the forcing term is simply:

_ 1 u"
f= H+VP- V2u+_--_(v- ), onft;

0 elsewhere.
(5)

Velocity-vorticity formulation

Following the same approach as in Kim eta[. (1991) one can reduce Eqs. (1) and

(2) to a fourth-order equation for v, and a second-order equation for the normal

component of vorticity g:

0 2 _TV, v V2fv-_V v = hv + + (6)

where

_g = h9 + V2g + f9 (7)

Ov

p+_=o (8)

Ou Ow Ou Ow 0/'` OYw
P= & +-&z' g= oz Oz f_ - Oz Oz

0
h, Oy ( OH,, OHw _ 02 02-_ --&--z+ --b-_z) + (b-_z2 + b-_z2) Hv

OH'` OHw
he- Oz Ox

The numerical approximation of the velocity vector u is fi = (fi, _3,_b).

written in terms of spectral and B-spline functions:

(9)

(10)

(11)

It is

t'eikx'eikx*Bt" " (12)_(x,y,z,t)= E _j(k_,kz, _ ,ty)
kz,j,k,

_b
kz ,j,k_

(13)

where BJ(y) is the B-spline of order I. B-spline functions of order l are defined on
a set of knot points tj by the following recursive relationship

(tj+l+l -- y) l-IB_(y)- (_ - t,) BJ-'(y) + ..... Bi+,(y)
(G;_-_j) (tj+l+l -- tj+l)

(14)
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where a B-spline of order zero is a top hat function, i.e B°(y) = 1 if tj < y < tj+]
and 0 otherwise. Note that the v-velocity is represented in terms of B-splines which
are one order higher than the B-spline expansion functions for u and w. This

allows the continuity equation, Eq. (8), to be satisfied exactly by the numerical
representation.

Using the method of weighted residuals, we obtain the discrete weak forms of

Eqs. (6) and (7):

(15)

L(_dV=/v_hgdV+/v_R-_V2_dV+_fadV (16)

where _ and ( are the weight functions, which we select to be:

_(x,y, z) = e-ik'Ze -_k: ZB_(y)

¢(x, y, z) = _-,k;z _-_k: ZB_-l(y). (_7)

Evaluating the integrals in Eqs. (15) and (16), we obtain two systems of ordinary

differential equations for fi and _ for each independent Fourier mode (k,, kz):

d_,

M_-_- = D_£, + R,(ft, fi,@) +r_ (18)

d_
Mg _ = Da_ + Ra(ft, £', _) + Fg (19)

where R_, Rg are the expressions resulting from the nonlinear terms, F_, Fg are the

expressions for the forcing terms, and Mr, Mg, D_,Dg are banded matrices. The
matrix elements of My, Mg, Dr, Dg are given in Kravchenko et al (1996).

The time-advancement of Eqs. (18) and (19) is carried out with a semi-implicit

scheme that uses Crank-Nicholson for the viscous terms and third order Runge-

Kutta for the nonlinear terms (rk3). All time dependent simulations were performed
with variable time steps and with the CFL number never exceeding V_ to satisfy

the stability condition of the third order Runge-Kutta scheme.

In this context, the form of the forcing function becomes:

f= (_H"+BH"-')+VP- V2u n+_--_(v-u'), onn;

0 elsewhere
(20)

where a and/_ are the Runge-Kutta coefficients.
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FIGURE 1. Sketch showing the effect of forcing and of a central difference diffusion

operator on the velocity field imposed by the forcing. Forcing is applied at the

surface (*) to drive the velocity to zero. The velocity at the point immediately

interior to the surface (-) is forced to be the reverse of the velocity at the point

immediately exterior to the surface (D). (a) initial velocity field, (b) velocity field

imposed by forcing, (c) velocity field after diffusion step.

Generation of no-slip wall_

We consider the generation of a no-slip wall, with the objective of obtaining a

smooth velocity field.

In order to obtain a smooth velocity field without resorting to smoothing of the

forcing function, we apply forcing on a set of points adjacent to the surface and

interior to the body. At these points (see Fig. 1), we reverse tangential velocities

across the solid surface and preserve normal velocities. This makes the velocity

gradients smooth across the boundary, minimizing any error due to the estimation

of the diffusion term.

Consider first the velocity component tangential to the surface. If we make the

velocity gradient linear across the surface, we will achieve the smoothest local tan-

gential velocity. This is accomplished by simply reversing tangential velocities across

the surface. The internal tangential velocity is scaled to produce no-slip at the de-

sired location according to uta,,i = _uta,,o. The scaling factor is set to _ = xi/Xo

where xi and Xo are the distances from the desired surface location to the internal

and external flow reversal points, respectively.

Notice that the effect of a second-order diffusion operator on the resulting velocity

field (Fig. 1) will be to maintain the desired velocity at the surface. If the initial

field is uniform, then the velocity field imposed by the forcing will reverse flow

across the boundary. The effect of diffusion will then maintain the no-slip condition

at the virtual surface, and vorticity will naturally diffuse into the flow. The effect
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FIGURE 2. Sketch showing how the simple reversal of tangential component

and preservation of normal velocity across the virtual surface leads to the expected

stagnation point flow. The numbers indicate pairs of flow-reversal points.

of this operator on the 'external' flow will be identical to that in the presence of a

conventional Dirichlet boundary: the vorticity at the surface will be diffused into

the flow by the action of viscosity.

Since we attempt to reverse tangential velocities across a solid surface, the re-

sultant velocity gradient normal to the surface is linear, and the velocity gradient

tangent to the surface will be zero, by definition. In that case, V2u will be zero on
the surface, and we have eliminated one of the terms in the error. In fact, since the

velocity gradient will never be exactly linear across the boundary, we also include

an estimate of the Laplacian in the force term, using the velocity field at the present
timestep.

Figure 2 shows how this forcing scheme will naturally reproduce the internal flow

corresponding to a stagnation point on a curved surface. The (local) specification of
the forcing to preserve normal velocity and reverse normal velocity at the numbered

pairs of flow reversal points is sufficient to reproduce the no-slip surface and the

internal flow corresponding stagnation point flow.

Note that this is the same boundary condition prescribed by Harlow and Welch

(1965) and is divergence free, thus ensuring compatibility with the velocity-vorticity
formulation of the velocity field. This choice of forcing may also be viewed as

introducing vorticity at the immersed surface to mimic the presence of a solid, no-

slip boundary. In this sense the method may be viewed as a grid-based vortex
method. However, it is also distinct from most vortex methods since it requires

only local information to calculate the value of the force. The effect of the forcing

is to generate an internal boundary layer within the body, in the reverse direction
to the external flow. One consequence of this method is the generation of internal

flow fields which are comparable to the local external velocities. When we deal with

three-dimensional bodies with significant surface curvature, this can lead to internal
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FIGURE 3. Sketch showing the relationship between the desired surface location

( ........ ), the base computational grid (_) and the B-spline planes used for force

calculation (.... ). The surface forcing points (*), internal forcing points (..),

and external velocity interpolation points (o) are also shown. Note that the force

calculation planes need not be evenly spaced.

velocities which exceed the free-stream values. This can present a problem either by

causing the timestep to be reduced (in a variable-time-step computational scheme),

or by exceeding the CFL number stability limits (in a fixed time-step scheme). In

our simulations, the effect on the timestep was not observed.

2.1.i Floating forcing mesh

To avoid the error incurred by interpolating between grid points in the Fourier

directions, we interpolate data across B-spline planes to ensure that the surface

sampling points (solid circles in Fig. 3) always coincide with Fourier collocation

points. Since the B-splines have compact support in physical space, it is economical

to perform the direct inversion of the transform to obtain the velocity field on any

desired x - z plane. Note that the planes on which the forcing function is applied

(dashed horizontal lines) need not necessarily coincide with the planes on which

the flow is computed (solid horizontal lines). The reversal of tangential velocities

is accomplished by forcing at points inside the surface (solid squares), where the

velocity is forced to be the reverse of the velocity measured at the corresponding

points in the external flow (dashed squares).

2.2 Laminar ribbed channel

For a test of the scheme we simulate laminar flow in a ribbed channel. The

geometry of the problem is shown in Fig. 4. We consider a flow between two ribbed

walls with periodic boundary conditions in the streamwise and spanwise directions.

As in the case of CMK, we keep the channel cross-section and pressure gradient
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FIGURE _. Sketch of the cross-sectional geometry of the channel. The mean

channel height L is kept fixed while the riblet angle _ is varied.
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FIGURE 5. Sketch showing the computational domain (solid lines) and the location
of the immersed boundary (dotted line). The mean location of the ribbed wall

(corresponding to the fiat channel case) is shown by the dashed line.
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FIGURE 6. Isosurface of zero streamwise velocity and contours of streamwise

velocity for the 60 ° riblet case, using 3rd-order B-splines. (a) 32 spanwise grid

points (b) 16 spanwise grid points.
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constant and monitor the variation of the steady-state flow rate with the riblet

geometry. CMK show that in the laminar case, the variation of the flow rate with

geometry is independent of the Reynolds number and thus the specific choice of Re
does not affect the results.

The computational domain extends from -1 < y < +1. No-slip conditions are

applied to the computational boundary. The immersed riblet surfaces are centered

at y = +7r/4. Thus the height of the channel is _r/2. The streamwise extent

of the computational domain is fixed at zr/2 for all simulations. A sketch of the

computational domain and the location of the immersed boundary is given in Fig. 5.

2._.1 Results

Figure 6 shows the isosurface of zero streamwise velocity for the case 0 = 60 °,

S/Lu = 0.2, using 3rd-order B-splines. Note that the sharp tip of the riblet is

well captured, even though only 32 spanwise grid points are used (Fig. 6a). A

comparison is also shown with the case using only 16 spanwise modes (Fig. 6b).
The rounding of the riblet tip can be seen in this instance and also the oscillations

in the velocity contours, due to inadequate spanwise resolution.

Figure 7 shows the comparison of computed flow rate ratios for the 3rd order

B-spline results with those of CMK. Note that the current method only requires 32

grid points per riblet in the spanwise directed as compared to 128 for the previous

code. Note also that since there is no grid-deformation in the current scheme,

the riblet angle does not affect the relative error to a large degree. In contrast,

the highly non-orthogonal grids required in the boundary-fitted grid method cause

much larger errors for the higher riblet angles.

Future plans

The numerical scheme will be extended to allow moving solid boundaries. Due

to the expense of calculating the B-spline coefficients at each timestep, it may be
necessary to utilize high order interpolation schemes to obtain field information at

points that do not coincide with the solution collocation points. Such methods

are readily available and are used in vortex schemes, for example, during remeshing

steps. The resulting moving-boundary code will be used to test open and closed-loop

control schemes (Koumoutsakos 1996) to minimize wall drag in turbulent flows.
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DNS of shock boundary-layer interaction -
preliminary results for compression ramp flow

By N. A. Adams

Preliminary results of a direct numerical simulation of a turbulent boundary layer

along a compression-ramp at M = 3 are presented. The evolution of mean-flow pro-
files and correlations are in accordance with trends in experimental data and theoret-

ical predictions. With the present simulation parameters no large-scale streamwise
vortical structures can be found, and there is no upstream-communication across

the region of flow separation. Explicit compressibility effects are significant in the

region of strong interaction between shock and turbulent boundary layer.

1. Motivation and objectives

In this report we summarize recent accomplishments of an ongoing effort towards

direct numerical simulation and large-eddy simulation of shock-turbulence inter-

action. The main objective is to provide a quantitative assessment of the shock

boundary layer interaction. Also, we hope eventually to be able to understand the

complex coupling mechanisms in the non-equilibrium area where shock, turbulence,

and mean-flow (separation) interact strongly. A goal of this effort is to provide DNS
results for the validation of relevant LES simulations.

In this report we want to demonstrate the feasibility of DNS for these kinds of
physically complex flows. Preliminary analysis of the generated data-base should

indicate trends for turbulence statistics. A subsequent improved simulation which

is presently in progress is expected to allow for a conclusive assessment.

2. Accomplishments

We present preliminary results for the flow structure and flow phenomena asso-

ciated with shock turbulent boundary layer interaction along an 18 ° compression

ramp. The flow is at M = 3 and Re = 5000, based on the free stream velocity and

kinematic viscosity and using as a reference length about a fifth of the turbulent
boundary-layer thickness at inflow. Well documented experimental data at same

Mach number, significantly higher Reynolds number, and a ramp deflection angle
of 25 ° are available by Zheltovodov, see Settles ef al. (1991). The experimental

oncoming fluctuation profiles, however, are significantly distorted due to boundary-
layer tripping. As the experiment shows, the wall temperature is almost constant

before and after the compression. This is consistent with our assumption of an

isothermal wall in the present simulation.
The numerical scheme is based on the hybrid compact-upwind ENO schemes as

proposed by Adams & Shariff (1996). The numerical method, boundary conditions,
implementational issues, and code validation have been reported by Adams (1994,

1995, 1997).



330 N.A. Adams

25

20

15

0 I T I
0 I0 20 30 40 50 60 70 80 90

X

FIGURE 1. Computational mesh (each 10th grid line shown).

Inflow data are taken from a separate DNS of a temporally evolving turbulent

flat plate boundary layer. We use one realization, i.e. the streamwise periodic

flow field at one time instant, of this DNS which is convected at 0.8Uo_ through

the inflow-plane of the computational domain. This convection velocity is estimated

from the average absolute speed of large-scale structures (Adams and Kleiser 1996).

For a recent discussion on turbulent inflow data for DNS see Chung and Sung

(1997). S_ce our main purpose here is to demonstrate the feasibility of supersonic

compression ramp DNS, inflow-data deficiencies are considered to be less significant.

In a subsequent well-resolved DNS, inflow data are to be taken from a separate

spatial boundary-layer DNS. For the present simulation a discretization of 800 cells

in the streamwise, 70 the in spanwise, and 140 in the wall-normal direction have been

used. The sampling-time was about 515 time-units with 280 data samples, which

yields about 90 GWords of stored data. The computing time was about 600 CPU

hours on 4 concurrently running CPUs on a NEC SX-4, where the code presently

reaches about 3.3 GFLOPs on 4 CPUs (work on further parallel optimization is in

progress).

In Fig. 1 we present a side-view of the domain and the mesh discretization, and in

Table 1 the start-point coordinates of mesh planes are given along which flow-data

have been sampled and evaluated.

TABLE 1. Evaluation mesh-line start-point coordinates.

i (x,0) (0,z)

1 25.00 0.00

2 45.04 0.11

3 48.02 1.03

4 51.96 3.00

5 54.95 5.07

6 74.97 7.84

Figures 2 and 3 show visualizations of the instantaneous flow field. In Fig. 2

the gray-scale distribution of the backward plane and the ramp surface corresponds
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15.0

F_GUtlE 2. Pressure and iso-surface of longitudinal velocity, u = 0.4, t = 846.96.

to the local static pressure. The ramp-shock, emerging from the area of sepa-

rated flow close to the corner, is evident. A surface of streamwise contravariant

velocity component u c = 0.4U_ indicates the increased fluctuation level after the

compression. In the back-plane pressure distribution, close to the boundary-layer

edge, local pressure peaks can be seen. From a time sequence it has been con-

firmed that these pressure-peaks are generated whenever a violent ejection event

occurs. Subsequently, they are convected downstream and their strength decreases.

Similar observations, identified as shocklets, have been made experimentally, see

Smits and Dussauge (1996). In Fig. 3 the shock, which forms essentially outside of

the boundary layer, is visualized by a surface of high negative velocity dilatation

(divu = -0.2). Essentially, no shock motion can be detected from time sequences

of shock surfaces, except for some shock-foot oscillations towards and away from

the wall. This behavior is related to the dynamics of the flow near the corner.

Figure 4 shows iso-eontours of the instantaneous spanwise vorticity field in a
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FIGURE 3. Density and shock-surface, div(u) = -0.2, t = 846.96.

(b)

FIGURE 4. Spanwise vorticity at y : 1.2, t = 846.96, (a), and t = 848.81, (b).

cross-plane (truncated to an area close to the corner) at two time instances. The

pressure rise in front of the corner causes the near-wall shear layer to separate. There

is no indication of large-scale vortical structures, such as GSrtler-like vortices, for
instance.

Iso-contours of the time-averaged (using 280 samples over about 520 time-units)
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FIGURE 5. Time-averaged streamwise contravariant vorticity at position 2 (a)

_ _ _ -7< 0.42.-1.54 < wxc_< 2.69 ,4 (b) -2.58 _< _)_ _< 3.68 and 6 (c) -0.33 _<w= _

streamwise contravariant (approximately longitudinal) vorticity-field in cross-planes

are shown in Fig. 5. Position 2 is in front of the corner, Fig. 5(a), position 4 right

after the corner, Fig. 5(b), and position 6 further downstream, Fig. 5(c). These

figures confirm the apparent lack of large-scale streamwise vortical motions.

The G6rtler number, estimated from streamline curvature of the Favre-averaged

velocity-field, does not exceed values of about GT = 3 (for a definition see e.g. Smits

and Dussauge (1996), p. 277) so that G6rtler instability of the separated flow seems

not likely (the critical value for the G6rtler number defined with the momentum

thickness is about 7). In any case, the spanwise wavelength of a dominant G6rtler

instability is about 2_0 (two mean boundary-layer thicknesses), which cannot be

represented in our simulation since the spanwise extent of the computational do-

main is too narrow (somewhat less than one mean boundary-layer thickness). Note
that, in a numerical simulation of a supersonic transitional boundary layer along

a compression ramp at low Reynolds number by Comte & David (1996), G6rtler

vortices were present.

Results of rapid distortion theory (RDT) indicate that the strong Reynolds anal-

ogy (SRA) is not valid across the interaction region (Mahesh et al., 1996). To
address this issue the correlation of u" and T" has been time-traced at 6 positions

before, within, and after the interaction area (Table 2). Apparently SRA holds

within generally accepted accuracy of about 80% correlation before the interaction,

collapses within the interaction region, and recovers only slowly further downstream.

This fact is of significance for turbulence modeling, where SRA is often employed

when incompressible models are extended to compressible flows.

Figure 6(a) shows surface-pressure and skin-friction, averaged over 280 time sam-

ples. The ramp corner is at z = 50. The skin friction coefficient of the oncoming
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TABLE 2. Evaluation mesh-line start-point coordinates.

x y z corr(T"u")

24.95 0.00 1.29 -0.79

24.95 1.07 1.29 -0.80

47.89 0.00 1.65 -0.46

47.89 1.07 1.65 -0.17

54.76 0.00 3.27 -0.68
54.76 1.07 3.27 -0.23

turbulent mean flow is about C/= 0.0024 which corresponds to a Reynolds num-
ber about 5 times smaller than in the previously mentioned experiment of Zhel-

tovodov, according to the van Driest C/-correlation (Schlichting, 1982, p. 734).
The Reynolds number, defined with the distance from the leading edge, is approx-

imately ReL _-- 170000 for the simulation, while for the experiment it is about

ReL _-- 876900. The C/-distribution downstream of the compression still becomes

smoother by adding more samples. The value of the surface pressure Psurf after the
compression reaches the level predicted by inviscid theory. An inflection point in

the psur/-distribution has developed roughly at the corner, indicating incipient sep-

aration. Within the sponge layer, between x = 82 and the end of the computational
domain, the mean-flow profiles are significantly distorted since the turbulent flow is

forced towards a thin laminar profile. This is the reason for the strong excursions of
Cf in this region. In a subsequent simulation the flow will be forced to a turbulent

mean-flow profile instead.

Figure 6(b) shows time-traces of an average "instantaneous" separation location,

which we define as the first point where the spanwise averaged skin-friction be-

comes negative and the average "instantaneous" reattachment location, the last

point where the spanwise averaged skin-friction becomes positive again. While the
separation line shows a clearly regular oscillation, the reattachment line does not.

The Fourier-transform of the separation-point location has a peak at a frequency

of about w = 0.11, which corresponds to the time-scale imposed by the inflow-data.
The abovementioned way of imposing inflow-data generates a temporal correlation

time scale of size L,/0.8 at inflow (Lz = 7 is the streamwise computational box-size

of the temporal DNS). The Fourier-transform of the reattachment-point location,

however, does not show a similar dominant frequency. It can be concluded that

hypotheses about upstream communication effects in a separation bubble (Smits
and Dussauge, 1996), are not validated by our simulation since separation and
reattachment location are apparently decorrelated.

Profiles at streamwise positions 1 through 6 as given in Table 1 are shown. Figure
7(a) shows a sequence of Favre-averaged temperature profiles, staggered by incre-

ments of 0.5 for convenience. A sequence of Favre-averaged contravariant-velocity

profiles in Fig. 7(b), staggered by increments of 0.5, shows deformations by regions

of retarded flow due to the adverse pressure gradient. From Fig. 6(a) it can be seen
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that the mean flow reattaches just before the corner. This behavior is consistent

with experimental results at M = 2.25 for an incipient separation at an 18°-ramp

(Ardonceau et al., 1979)• Note that sampling stations 2 and 3 are just after mean

separation and just after mean reattachment, respectively, such that a region of

separated flow can only be seen vaguely in profile number 2. Favre-averaged ve-

locity profiles first thicken across the interaction region to become thinner again

further downstream, mainly also due to the reduced post-shock boundary layer

edge-velocity. The mean velocity profiles recover slowly towards an equilibrium

shape.



336 N. A. Adams

15.0

12.0

9.0

N

6.0

3.0

0.0

i i

11 2 31 41 5 61

0._ 0.010 0.020 0.030 0.1)40

puC"u c" (b)

. 1 2 3 "fit6 '

0.000 0.005 0.010 0.015

_puC"w¢''

FIGURE 8. Normal Reynolds-stress, (a), and Reynolds shear-stress, (b).

15.0

12.0

9.0

N

6.0

3.0

0.0
0.000

1 12 3 14
i

! ;

: I
(

0.001 0.002
E

5 6

0.003

i

0.004 0.0000

(a) (b)
0.0005 0.0010 0.0015

FIGURE 9. Total dissipation (a), and dilatational dissipation (b).

Profiles of Reynolds-stresses (using contravariant velocities), shown in Fig. 8, stag-

gered by 0.005 and 0.002, respectively, evolve qualitatively essentially as reported

in Smits and Muck (1987). The evolution of the normal stresses is characterized by

a pronounced peak near the boundary-layer edge, besides the near-wall peak which

can be found in any statistically developed turbulent boundary layer, Fig. 8(a). Fig-

ure 8(b) shows profiles of the shear-stress profiles at stations 1 through 6. Profiles
2 and 3 show an increased u"w"-correlation near the boundary layer edge, which is

also typical for a late transitional boundary layer (Adams and Kleiser, 1996), where

detached shear-layers in the outer boundary-layer part are generated and break up.

The areas of maximum Reynolds shear-stress do not coincide with those of maxi-

mum turbulence intensity (those rather follow the Reynolds normal-stress) at these

stations. Similar to the normal stresses, the shear-stresses are amplified across the

interaction region and show a non-equilibrium profile at station 6. Qualitatively,
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the results again agree with experimental data of Smits and Muck (1987).

Well within the boundary layer the normal-stresses are amplified across the in-

teraction region by about one order of magnitude, which corresponds to experimen-

tal findings, Smits and Muck (1987). Essentially the same holds for the Reynolds

shear-stress. The amplification of the Reynolds shear-stress is consistent with RDT-

predictions (Mahesh et al., 1996) for large shock-obliqueness angles,whereas for a
normal shock the Reynolds shear-stress would be damped.

The simulation results also indicate that terms appearing explicitly in the com-

pressible form of the turbulent-kinetic-energy equation, such as pressure dilatation

and dilatational dissipation, assume an appreciable value of up to 25% of the total

dissipation in the interaction region (Fig. 9) whereas they are insignificant in flat

plate boundary layers up to M = 6 (Guo & Adams, 1994). These results need to

be confirmed by higher resolution simulations.

3. Future plans

Well resolved simulations at higher Reynolds number are in progress. Along

with the DNS, effort on LES is presently pursued by evaluating modeling strategies

with respect to their suitability for compressible boundary layer. To assess the

effectiveness of the LES for compression ramp flow we will conduct a priori analyses

of the compression ramp DNS data. Implications for turbulence modeling will be
addressed.
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